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ABSTRACT

Understanding the protein conformational landscape is critical, as protein function
in processes such as ligand binding is intimately connected with structural varia-
tions. This work focuses on learning a generative neural network on a simulated
ensemble of protein structures obtained from molecular simulation to characterize
the distinct structural fluctuations of a protein bound to various drug molecules.
Specifically, we use a geometric autoencoder to learn separate latent space encod-
ings of the intrinsic and extrinsic geometries of the system. Our proposed Protein
Geometric AutoEncoder (ProGAE) model is trained on the length of the alpha-
carbon pseudobonds and the orientation of the backbone bonds of the protein. Us-
ing ProGAE latent embeddings, we reconstruct and generate the conformational
ensemble of a protein at or near the experimental resolution, while gaining bet-
ter interpretability and controllability of the learned latent space. Results show
that our geometric learning-based method enjoys both accuracy and efficiency for
generating complex structural variations, charting the path toward scalable and
improved approaches for analyzing and enhancing molecular simulations.

1 INTRODUCTION

The complex and time-consuming calculations in molecular simulations have been significantly
impacted by the application of machine learning in recent years. For a comprehensive review of
such work, see (Noé et al., 2020a;b). There has been interest in modeling the conformational space
of proteins using deep generative models, e.g. (Bhowmik et al., 2018; Ramaswamy et al., 2020).
In this work, we learn the protein conformational space from a set of protein simulations by using
geometric deep learning. We also investigate how the geometry of a protein can assist learning and
improve interpretability of the latent conformational space. Our main contributions summarized:

• Inspired by recent unsupervised geometric disentanglement learning works (Tatro et al., 2020;
Yang et al., 2020), we propose a novel geometric autoencoder named ProGAE that directly learns
from 3D protein structures via separately encoding intrinsic and extrinsic geometries.

• We find that the intrinsic geometric latent space, even with a small variation, is important for
reducing geometric errors in reconstructed proteins.

• Analysis shows the learned extrinsic geometric latent space can be used for drug classification and
property prediction, where the drug is bound to the given protein.

Related Work Several recent papers use AE-based approaches for either analyzing and/or gener-
ating structures from the latent space (Bhowmik et al., 2018; Guo et al., 2020; Ramaswamy et al.,
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Figure 1: Architecture of our network, ProGAE, that generates protein conformations via separate
encoding of data related to coarse intrinsic and extrinsic geometries. These geometries are captured
via the orientation of the backbone bonds (extrinsic) and length of Cα−Cα pseudobonds (intrinsic).

Figure 2: ProGAE reconstructions of S protein (left) and hACE2 data (right). Blue and red structures
correspond to the reconstructed and ground truth structures, respectively.

2020; Varolgüneş et al., 2020) . Bhowmik et al. (2018) and Guo et al. (2020) aim at learning from
and generating protein contact maps, while ProGAE directly deals with 3D structures. Ramaswamy
et al. (2020) trains a 1D CNN autoencoder on backbone coordinates and uses a loss objective com-
prised of geometric MSE error and physics-based error. We run ProGAE on the same MurD protein
simulations studied in Ramaswamy et al. (2020) and compare the reconstruction quality with respect
to the value reported in that study as well as to the experimental resolution.

To our knowledge, our work is the first to propose an autoencoder for the unsupervised modeling
of the geometric disentanglement of protein conformational space captured in molecular simula-
tions. This representation provides better interpretability of the latent space, in terms of the physico-
chemical and geometric attributes and results in more geometrically accurate protein conformations.

2 PROGAE FOR PROTEIN CONFORMATIONAL SPACE

Geometric Features as Network Input ProGAE separately encodes intrinsic and extrinsic geom-
etry with the goal of achieving better latent space interpretability. Mathematically, we can consider
a manifold (i.e. curve) independent of its embedding in Euclidean space. Properties that do not

Table 1: The leading canonical correlation between the intrinsic and extrinsic ProGAE latent spaces,
and the performance of a linear model trained on the latent spaces for bound drug classification.

Drug classification S protein hACE2
1st canonical corr. 0.08± 0.00 0.07± 0.01

Trained on intrinsic 2.0± 0.1% 1.4± 0.0 %
Trained on extrinsic 99.6± 0.3% 99.6± 0.2 %
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Table 2: Reconstruction, bond length, and RMSD (from ground truth) error on the test sets using
ProGAE. The RMSD is within the resolution of the associated PDB files.

Errors S protein hACE2 Benchmark MurD

Exp. Res. (Å) 2.68/2.80 2.20/3.00 2.40/1.77/1.84

Test Reconstruction 1.39± 0.01 E0 6.27± 0.03 E-1 2.02± 0.32 E-1
Bond length (Å) 3.88± 0.02 E-1 1.63± 0.02 E-1 1.73± 0.06 E-1

RMSD (Å) 2.54± 0.56 1.24± 0.23 1.79± 0.36

depend on an embedding are known as intrinsic geometric properties, with others referred to as
extrinsic. For an in-depth review of geometry, we refer to (Do Carmo, 2016).

As we will learn the conformational space of a given protein, the protein primary structure is implicit.
Then we view the protein at the level of its backbone, as it is sufficient for reconstructing it. Of
importance in the backbone are the Cα atoms. A coarse-level description of the backbone is the Cα
atoms connected linearly in terms of the protein sequence, known as the trace of the protein.

We model the backbone by the graph, Gb = (Vb,Eb), and the backbone trace by the graph, Gt =
(Vt,Et). Then our introduced intrinsic and extrinsic signals, Int : Et → R and Ext : Eb → R3

are defined, Int(Eij) = ‖Eij‖2, Eij ∈ Et and Ext(Eij) = sgn(j − i)
Eij

‖Eij‖ , Eij ∈ Eb.
These correspond to the lengths of Cα−Cα pseudobonds and backbone bond orientations. We will
see they allow us to faithfully reconstruct protein backbone. These signals are depicted in Figure 1.

Network Architecture The core idea is to create an intrinsic latent space, LI ∈ Rni , and an
extrinsic latent space, LE ∈ Rne , via separately encoding the intrinsic and extrinsic signals. Con-
sequently, our network contains two encoders, Enci and Ence. Here Enci ◦ Int(Et) ∈ LI and
Ence ◦ Ext(Eb) ∈ LE . We then jointly decode these latent vectors to recover the coordinates of
the backbone atoms. Thus, we define the decoder, Dec : LI × LE → R|Vb|×3.

This high level structure of ProGAE is depicted in Figure 1. Specific details on layer widths and
other parameters can be found in Appendix A.1. The intrinsic encoder is simple as the signal is
defined on the backbone trace, which corresponds to a set of discrete curves. Then we defineEnci to
be a series of 1D convolutions operating on each curve/fragment. In contrast, the extrinsic encoder
operates on the backbone, which is a graph. So the layers of graph attention networks (GATs)
introduced in (Veličković et al., 2017) are a natural tool to use, albeit with some modification. Since
the input signal is defined only on the edges of the graph, Eb, we define a signal on the graph
vertices, Vb, as the average value of its incident edges, f0(vi).

Then the first layer of the extrinsic encoder uses the edge-convolution operator of (Gong & Cheng,
2019) to map this edge-defined signal to a vertex-defined signal. The rest of the encoder contains
successive graph attention layers with sparsity defined by a neighborhood radius. At each layer, the
signal is downsampled by a factor of two based on farthest point sampling. Given L layers, this
defines a sequence of graphs, {Gb,i}Li=0, with increasing decimation. Along with Enci, each layer
is followed with batch normalization and ReLU. Summarily, for l = 2, ..., L,

fl = σ ◦BN ◦GAT (DS(fl−1; 2)), f1(vi) := GAT (f0(Vb), Ext(Eb)). (1)

The intrinsic and extrinsic latent codes, zi and ze, are produced after global average pooling, a dense
layer, and Tanh function are applied to the output of the encoders.

The latent code z is taken as the concatenation of the two latent codes, [zi, ze]. A dense layer maps
z to the a signal defined on the most decimated backbone graph, Gb,L. The structure of the decoder,
Dec, mirrors Ence with convolutions mapping to upscaled graphs. The output of Dec is the point
cloud, P̂ , corresponding to the predicted coordinates of the backbone atoms, Vb ≈ P .
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(a) S protein (b) Human ACE2

Figure 3: The projection of the latent space embedding to the first two canonical vectors between
the intrinsic and extrinsic latent spaces. Color indicates the identity of the drug that the protein is
bound to in that conformation. Clustering by drug identity is apparent in the extrinsic latent space,
but not the intrinsic latent space, consistent with Table 1.

Table 3: Percentage of bonds that are 10% shorter than the minimum seen in training data. The
difference (Diff) between the intrinsic+extrinsic ProGAE and the extrinsic-only ProGae is reported.

Dataset C-CA C-N C-O CA-N CA-CA

S protein Int.+Ext. (%) 14.41 22.58 27.00 15.24 15.33
Ext. Only (%) 19.04 27.34 27.66 18.58 20.89

Diff of Adding Int. -4.63 -4.76 -0.66 -3.40 -5.56

hACE2 Int.+Ext. (%) 2.45 8.19 12.07 4.62 0.51
Ext. Only (%) 4.99 9.81 12.34 5.21 1.59

Diff of Adding Int. -2.54 -1.62 -0.27 -0.59 -1.08

3 NUMERICAL EXPERIMENTS AND RESULTS

For each dataset, we train three models, each from a different random seed, and report both mean and
standard deviation in our results. Datasets used are atomistic simulation trajectories 1 (D.E. Shaw
Research, 2020). These two main datasets are: (1) 50 independent trajectories, each simulating
the SARS-CoV-2 trimeric spike protein (S protein) in the presence of a distinct drug for 2µs. ;
(2) 75 independent trajectories, each simulating the ectodomain protein of human ACE2 (hACE2)
in the presence of a distinct drug for 2µs. For comparing with existing work, we run ProGAE on
MurD protein simulation data (Ramaswamy et al., 2020) publicly available 2. Further details on the
datasets and their use in training can be found in appendix A.2.

Structure Reconstruction Figure 2 displays the ability of ProGAE to accurately reconstruct pro-
tein conformations. The backbones are visible with atom-wise error in Figures 4a and 4b in the
appendix. Table 2 contains performance metrics, such as RMSD (after alignment), of ProGAE. In
either case, the RMSD of the reconstruction is within the experimental resolution of the associated
PDB files. The average error in the length of the pseudobonds is also sub-Angstrom. The RMSD (on
secondary structure elements) on the benchmark MurD test data (Ramaswamy et al., 2020) is lower
or comparable to the experimental resolution and within the range of what has been reported in the
original study that uses more explicit loss (bond, angle, nonbonded) terms compared to ProGAE.

We also evaluate the performance of linear interpolations in the learned latent space. Results of in-
terpolation between conformations from different trajectories in terms of RMSD is shown in Figure
5 in the appendix. A smooth exchange in the RMSD error from both endpoints is evident.

Utility of the Extrinsic Latent Space We explore the statistical relationship between the learned
intrinsic latent space and the extrinsic latent space. Canonical correlation analysis (CCA) is a natural
approach to assess if a linear relationship exists (Hardoon et al., 2004). Table 1 includes the lead-
ing correlation between these spaces for each dataset. Note this correlation is very low, implying

1available here: http://www.deshawresearch.com/resources_sarscov2.html
2https://collections.durham.ac.uk/files/r26w924b81m#.YBuGGi-z2Mw
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that there is a negligible linear relationship between the intrinsic and extrinsic latent spaces. This
confirms a notable level of disentanglement that has been explicitly encoded in our architecture.

We investigate if the distinct drug information associated with a trajectory is encoded in the two
disentangled latent spaces. Table 1 contains the performance of a linear classifier trained on the
different latent spaces to classify the drug present in each frame. It is clear that the drug molecule
can be almost perfectly classified in the extrinsic latent space, while such classification is random in
the intrinsic latent space. Figures 3a and 3b visualize these embeddings of the test set in the latent
spaces, projected to the first two canonical components. We also train a linear regression model
on the extrinsic latent space to predict physico-chemical properties of the bound drug. Results
comparing this regression to one on the PCA embedding are in Table 4 in the appendix.

Utility of the Intrinsic Latent Space The inclusion of the intrinsic latent space improves the
geometric validity of the reconstructed protein. We trained a model that only encodes the extrinsic
signal to reconstruct the protein. While it was comparable in performance regarding L2 error, we
found this extrinsic-only model resulted in a higher percentage of erroneous bonds. This is shown
in Table 3. We define a erroneous bond, if the bond length deviates by more than 10% from the
minimum of the ground truth distribution, as such deviations will result in steric clashes.

4 CONCLUSION

We introduce a novel geometric autoencoder, ProGAE, for learning meaningful disentangled rep-
resentations of the protein conformational space. The autoencoder separately encodes intrinsic and
extrinsic geometries to ensure better latent interpretability. The extrinsic latent space can classify
structures with respect to their bound drug molecules. The intrinsic space improves the validity of
bond geometry in the reconstructions. The disentangled, smooth latent space enables controllable
generation in a drug-dependent manner. These results suggest that the proposed framework can
serve as a step towards bridging geometric deep learning with molecular simulations.

ACKNOWLEDGMENTS

J. Tatro’s work was supported by the IBM-RPI AIRC program. R. Lai’s work is supported in part
by NSF CAREER Award (DMS—1752934)

REFERENCES

Debsindhu Bhowmik, Shang Gao, Michael T Young, and Arvind Ramanathan. Deep clustering of
protein folding simulations. BMC bioinformatics, 19(18):47–58, 2018.

Luca Cosmo, Antonio Norelli, Oshri Halimi, Ron Kimmel, and Emanuele Rodolà. Limp: Learning
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Yasemin Bozkurt Varolgüneş, Tristan Bereau, and Joseph F Rudzinski. Interpretable embeddings
from molecular simulations using gaussian mixture variational autoencoders. Machine Learning:
Science and Technology, 1(1):015012, 2020.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Jie Yang, Kaichun Mo, Yu-Kun Lai, Leonidas J. Guibas, and Lin Gao. Dsm-net: Disentangled
structured mesh net for controllable generation of fine geometry, 2020.

6



Published as a workshop paper at ICLR 2021 SimDL Workshop

A APPENDIX

(a) 3 RBDs of S protein (b) Ectodomain of Human ACE2

Figure 4: Reconstructions of protein frames from test data using ProGAE. The top row displays the
ground truth, while the bottom row displays the corresponding structure generated by the network.
Color in the top row denotes separate protein chains, while color in the bottom row indicates the log
of atom-wise L2 error. Color of the bonds indicates the average of the constituent atoms.

Table 4: Results of linear regression on the extrinsic latent space for predicting physical and chem-
ical properties of the drugs that a protein is bound to. Error is normalized for interpretability. For
comparison, performance of linear regression on the PCA embeddings of the orientation of the
backbone bonds is reported. This embedding is restrained to the same dimension as the latent space.

Dataset Molecular
weight

Hydrogen bond
donor count

Topological polar
surface area

S protein PCA error (σ) 0.78± 0.00 0.81± 0.01 0.79± 0.00
Latent error (σ) 0.55± 0.04 0.56± 0.03 0.61± 0.00

hACE2 PCA error (σ) 0.71± 0.00 0.65± 0.00 0.73± 0.00
Latent error (σ) 0.55± 0.01 0.57± 0.01 0.53± 0.02

Loss Function The first term in the loss function is a basic reconstruction loss, where P and P̂ are
taken to be the true and predicted coordinates of the protein backbone atoms. Namely, we evaluate
their difference using Smooth-L1 loss, SL1. This loss, SL1(x,y), is defined, with δ = 2, as

#x∑
i=1

min

(
δ2

2
(xi − yi)2, δ|xi − yi| −

1

2

)
. (2)

This loss is less sensitive to outliers (Girshick, 2015).

As the reconstruction loss depends on the embedding of the protein in Euclidean space, it may
not best measure if intrinsic geometry is faithfully reconstructed. To address this, we consider two
encoded proteins with latent codes, [zi,1, ze,1] and [zi,2, ze,2]. Then we form a new latent variable,

ẑi = (1− β)zi,1 + βzi,2, ẑe = ze,1, β ∼ U[0, 1]. (3)

Each of these latent variable decodes to a point cloud P̂ . We let Int(Êt,β), Int(Êt,1), and
Int(Êt,2) be the lengths of the pseudobonds of the generated proteins from the interpolated la-
tent code and the two given latent codes. We then introduce a bond length penalty, R(P̂1, P̂2),
given by,

Eβ ||Int(Êt,β)− l
(
Int(Êt,1), Int(Êt,2)

)
||1, (4)

where l(x,y) = (1− β)x+ βy, β ∈ U[0, 1]. (5)
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(a) S protein (b) Human ACE2

Figure 5: RMSD of proteins generated along the latent interpolation between two proteins from
different trajectories. The RMSDs are computed with respect to the endpoint proteins, with standard
error shown. We see a smooth interpolation between the RMSD errors as desired.

This penalty can be viewed as promoting faithful reconstruction of the pseudobond length be-
tween Cα atoms, as well as a smooth interpolation of these lengths along paths in LI , that is in-
dependent of LE . This penalty is analogous to the metric preservation regularizer introduced in
(Cosmo et al., 2020) for 3D meshes. Thus, the loss function L((P̂1, P̂2), (P1,P2)) for ProGAE is,∑2
i=1 SL1(P̂i,Pi) + λRR(P̂1, P̂2).

A.1 NETWORK HYPERPARAMETERS

Here we specify the hyperparameters of the networks used in conducting our experiments. Each
encoder contains 5 layers with filter sizes, {12, 24, 48, 96, 96}. The decoder structure is mirrored
with filter sizes, {128, 128, 64, 32, 16, 3}. Each graph attention layer has 4 heads of attention. The
dimensions of the intrinsic and extrinsic latent spaces are set to 16 and 32 respectively.

Each Enci convolution is taken to have a kernel size of 3 and a stride of 2, being followed with
batch normalization layers and ReLU.

For training, we use ADAM with a learning rate of 1E-3 (Kingma & Ba, 2014). Learning rate decays
at a rate of 0.995 per epoch. We train models with a weight decay penalty of 5E-5. The models are
trained 100 epochs, which is enough to achieve convergence, with a batch size of 64. Additionally,
we set λR = 5E-1 for the bond length penalty.The neighborhood radius for defining the sparsity of
the graph attention layer is set to 2.5 Å in the first layer. This radius is scaled at each layer with the
stride of the previous convolution.

A.2 ADDITIONAL DATASET DETAILS

The backbones of the S protein and the hACE2 protein contain 3,690 atoms and 2,386 atoms, re-
spectively. The time resolution is 1,200 ps. We use the first 70% of frames from each trajectory to
form the training set. The next 10% and the last 20% of frames form the validation and test sets.
The train and test sets are intentionally kept temporally disjoint to better assess generalization.
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