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Results

Conclusion and discussion

We artificially introduce perturbations into the systems and use ODE equations to 
simulate pseudo-experimental response trajectories. We evaluated both the 
predictive accuracy of cell responses to these perturbations, as well as the accuracy 
of network inference. The models can predict system responses to external perturb-
ations (average MAE < 10−3), as well as capture the system structures by inferring 
the network interaction parameters (average Pearson’s correlation > 0.9).

Biology-inspired synthetic systems We tested CellBox on synthetic analogs of 
four real biological systems adapted from Pratapa et al., including mammalian 
cortical area development (mCAD), ventral spinal cord (VSC) development, 
hematopoietic stem cell (HSC) differentiation and gonadal sex determination (GSD), 
which were human-curated from the research literature and have been repeatedly 
validated by experiments. Similar to the abstract systems, these models achieved 
the same level of prediction error (MAE: 10−4-10−3) and inference accuracy 
(Pearson’s correlation: 0.9-0.99).
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We have previously developed a hybrid approach, CellBox, that combines explicit 
ODE models of cellular interactions with an automatic differentiation framework 
implemented in TensorFlow. CellBox had some key limitations including, only tested 
in one specific system and on steady-state data, potential trucation errors due to the 
use of non-stiff solvers, and arbitrary choice of fixed time step due to the static 
computational graph in Tensorflow. To move beyond these limitations, we 
implemented the CellBox algorithm in Julia, where we replaced back propagation 
through time with adjoint sensitivity and changed Heun’s ODE solver with fixed time 
steps to high-order ODE solvers with adaptive time steps. 

Method
A set of ODEs was used to describe the time development of the system variables 
upon perturbation: 

where           and           correspond to simulated and measured molecular profiles. 
We use the ODE solver of the Tsitouras 5/4 Runge-Kutta method. The first-order 
optimizer Adam is adopted. Learning rate annealing is exploited. We employ weight 
decay to encourage sparsity in the interaction matrix, which is based on our under-
standing of interactions in biological networks. To accelerate training, the training 
proceeds with mini-batching, in which we sample                time points from each 
perturbation condition as a single batch and we iteratively loop over all conditions. 

Abstract synthetic systems We first conduct proof-of-concept experiments by 
applying the CellBox algorithm to several typical abstract networks presented in 
Pratapa et al. (2020), including linear (LI), cyclic (CY), and bifurcation (BI) networks. 

Data-driven dynamic models of cell biology can be used to predict cell response to
unseen perturbations. Recent work (CellBox) had demonstrated the derivation of 
interpretable models with explicit interaction terms, in which the parameters were
optimized using machine learning techniques. While the previous work was tested
only in a single biological setting, this work aims to extend the range of applicability
to a diversity of biological systems. Here we adapted CellBox in Julia differential 
programming and augmented the method with adjoint algorithms, which has recent-
ly been used in the context of neural ODEs. We trained the models using simulated 
data from both abstract and biology-inspired networks. The accuracy of prediction 
by these models is high both in terms of low error against data and excellent agr-
eement with the network structure used for the simulated training data. This work 
demonstrates the ability to construct and parameterize a considerable diversity of 
network models with high predictive ability. The expectation is that this kind of 
procedure can be used on real perturbation-response data to derive models 
applicable to diverse biological systems.

interaction among molecules. The scaling factor    quantifies the strength of the 
natural decay term            . A hyperbolic tangent envelope function is used to intro-
duce a saturation effect.     denotes element wise multiplication.
We re-implemented CellBox to learn the model parameters in the framework of 
neural ODEs. For instance, one can view the above equation as a neural network 
with single hidden layer where both the dimension of input and output is equal to   .
We denote the model predictions as

And we use the loss function of mean absolute error (MAE), i.e.,

where the    dimensional vector           represents the change in molecular or pheno-
typic measurement, e.g., log ratios of molecular concentration after and before 
perturbation   . The initial condition is               .                  quantifies the directional 
 

We have successfully adapted the CellBox method with adjoint sensitivity and de-
monstrated it can be effectively trained to predict responses and reconstruct the 
ground truth interaction networks in several abstract and biology-inspired networks.
This suggests that the CellBox can potentially be applied to a wide variety of biolog-
ical systems. The data requirement observed in this work might help with the design 
of future perturbation experiments needed to accurately simulate and predict the 
responses of a particular system.


