

University of Stuttgart

Institute of Fluid Mechanics and Hydraulic Machinery

Motivation

Target:

- Modelling fluid dynamical quantities, i.e. velocities w_i and pressure p_i
- · Graph neural network to learn direct predictions of the final steadystate velocity and pressure fields

Given:

- Meshed domain as a bidirectional graph G = (V, E), with Nodes V and Edges E
- Node feature vector v_i=[u_i, n_i]
 - Mesh-space coordinates u_i
 - Quantities n; describing the domain, e.g. angle of attack, Mach number, node type

Model

Edge Function

Local and global feature extraction with EDGECONV as edge function: $\cdot \mathbf{v}_i$

$$\mathbf{e}'_{ij} = \text{ReLU}(\Theta \cdot (\mathbf{v}_j - \mathbf{v}_i) + \phi)$$
$$\mathbf{v}'_{ij} = \max \mathbf{e}'_{ij}$$

with Θ and ϕ as a shared MLP and max as aggregation operation

- Local neighborhood information by relative displacement $(\mathbf{v}_i \mathbf{v}_i)$
- Global shape structure by absolute values vi

Architecture

- · EDGECONV layers as local feature descriptors
- Concatenation to include multi-scale features
- · Global max pooling for global feature vector
- Decoder transforming the latent features to output pi

www.ihs.uni-stuttgart.de

Dataset

Three data sets with fluid dynamical simulations to evaluate our method AIRFOIL

- NACA0012 airfoil for varying angle of attacks α and Mach numbers m
- · CFD: Steady-state, compressible, inviscid Euler equation

AIRFOILROT

Rotation of whole simulation domain of AIRFOIL by angle α

CHANNEL

- · Channel flow with varying number of generic objects randomly placed inside the channel
- CFD: Steady-state, incompressible, inviscid Navier-Stokes equation

Results

Comparing with models from literature: Base GCN and MESHGRAPHNETS with two extensions (ABS..Absolute values, POOL..Global Max Pooling) AIRFOIL

- Same geometry for all samples, solution only depending on α and m
- · Low RMSE with all methods

- · Sensitive understanding of geometric structure required
- Global information by absolute values v, and relative displacement $(\mathbf{v}_i - \mathbf{v}_i)$ necessary
- MESHGRAPHNETS with only relative displacement fails

CHANNEL

- · Strong understanding of complex geometric structure required
- Absolute values \mathbf{v}_i and relative displacement $(\mathbf{v}_i \mathbf{v}_i)$ together with local and global feature descriptors necessary
- Our methods achieves lowest RMSE
- · Generalizes well to new unseen geometric setups of the channel flow

Test root mean square error RMSE×10⁻²

Method	AIRFOIL	AIRFOILROT	CHANNEL
GCN	1.40	-	-
MESHGRAPHNETS	0.95	7.34	13.30
MESHGRAPHNETS (ABS)	0.73	1.28	13.04
MeshGraphNets (Abs+Pool)	1.25	0.99	6.58
Ours	1.40	0.87	5.81

Direct Prediction of Steady-State Flow Fields in Meshed Domain with **Graph Networks**

Lukas Harsch Stefan Riedelbauch

AIRFOIL Ground Truth

AIRFOIL Prediction

AIRFOILROT Prediction

CHANNEL Ground Truth

CHANNEL Prediction

