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Inducing Point GP with Soft Clustering

Total Energy Prediction in Crystal Lattice Systems

Introduction

In the search for advanced materials for various functional
applications ranging from energy storage to catalysis, deep
learning (DL) has quickly gained traction as a powerful and flexible

approach. In the search for advanced materials for various
functional applications ranging from energy storage to catalysis,
deep learning has quickly gained traction as a powerful and
flexible approach.

However, the design space is very large such that we are unable
to sample completely for these DL models. The resulting under-
sampling challenge can limit the training data and therefore the
predictive capability of the models.

Novel contribution

In this work, we aim to conduct an efficient uncertainty estimation
in deep learning for conducting robust prediction of material
properties using DFT simulation datasets.

 We combine a residual deep architecture as a feature extractor
with an approximate Gaussian process (GP) model to efficiently
estimate uncertainty using a single forward pass.

* We propose to introduce inducing point GP with fuzzy c-means
clustering that is used to represent the full datasets such that we
can reduce the computational complexity.

* We show the robust performance of the approach on total
energy prediction in a real-world lattice crystal structure SrTiO3
perovskite oxide from material chemistry.

Deep Feature Extractor with Residual Network

Deep kernel learning (DKL) is a well-established approach for
estimating uncertainty in deep neural networks with a single
forward pass. The overall idea of DKL is to first extract the feature
by leveraging deep neural networks and then use the feature
extractor as an input to a Gaussian process output which offers
probabilistic measurement.
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Qo Is a deep neural network parameterized by 6

. Is the base kernel
T Is the hyperparameters of the base kernel

DKL encounters several difficulties, particularly in scaling to large
datasets because the exact inference for GP is hampered by the
inversion of kernel matrix, where the time complexity scales
cubically with the number of data.

GP.Titsias (2009) proposed a variational formulation for sparse
approximations which jointly infers the kernel parameters ¢ and
inducing Iinputs by maximizing a lower bound of the log marginal
likelihood that is also known as the evidence lower bound, which is

defined as
DxL(Q|| P)=—) 0(Y)logQ(Y)+) O(Y

L(X)=1logP(X) —

Our approach is built upon this idea with a much smaller number of
iInducing points m; << N to overcome the scalability issue in GP.
Inducing point GP reduces the time complexity of the matrix
inversion from &(N?) to 6(m>N) .

we propose to use a soft clustering, that is often named as fuzzy c-

means (FCM), which aims to minimize the objective function
N mg

—argmlnz Zw "% —¢;||%,

=1 j=

)log P(Y,X)

wij € [0, 1]

C={ci,...,cm,} is the cluster centers Wij is the partition matrix

Spectral Normalization as a Regularization

Another limitation in DKL called feature collapse is the uncertainty
estimation is sensitive to changes in the input.

we use spectral normalization as a regularization combined with a
residual neural architecture for deep feature extraction.

Algorithm 1: Efficient uncertainty estimation in deep neural networks

1: Require: training data { (Xi, Yi)ie1 }, wide residual neural networks {2y with parameters 6, the number
of inducing point mg, approximate GP with parameters £ including inducing point locations ¢, fuzzy
hyperparameter, m ¢, learning rate .

. Initialize inducing points with fuzzy c-means clustering

Draw a random subset of m,. point from the training data X™ C X

Compute the fuzzy clustering (soft k-means) on Q4 (X™) with & = m,, use the centroids as initial inducing
point locations £, in approximate GP.

oy

Train residual neural networks and GP jointly

Implement spectral normalization on residual neural network parameters 6«6

Evaluate forward model to extract the feature space 1 < €2;(x)

Evaluate approximate GP on feature space with parameter ﬁ p(y|x) < GP¢(2)

. Define the loss function £ using the negative evidence lower bound, £ < NELB¢(p(y|x),y)
10 Minimize the loss function £ with respectto 8 £ via0,& <— 0,6 + X - Vg L
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Experiments: 1D Sinusoild Regression Problem

estimation and increasing points will improve the prediction including
uncertainty as expected

10 inducing points 20 inducing points 50 inducing points 100 inducing points

The fewer inducing points (e.g., 10 points) lead to a poor uncertainty

Materials chemistry simulations are performed to simulate these
materials under perturbation and obtain their resulting physical
properties such as total energy. Here, we tackle the robust
prediction of total energy to strain mapping for the case of the
SrTiO3perovskite oxide, which is otherwise intractable to obtain
from materials chemistry

This can be an exceptionally difficult problem due to the complex
underlying physics, and the high degree of sensitivity of the total
energy to the lattice parameters including the length and angle,
requiring very accurate predictions for the generated structures to
succeed. This proposed method can be extended to study various
crystal lattice structures, including bulk, surface, metal-organic
frameworks (MOFs), 2D materials, and cluster structures in
materials chemistry
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The total energy prediction with respect to lattice length and lattice
angle parameters given 10 and 50 inducing points
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Conclusion and Future Work

We propose an efficient uncertainty estimation in deep learning and
apply it for robust prediction of total energy in materials chemistry,
specifically crystal lattice systems. Our approach is built upon deep
kernel learning (DKL) and addresses the existing challenges by
combining spectral normalization and inducing point approximate
GP In feature space. The future work will compare our approach to
other baseline methods, such as Monte Carlo dropout, Bayesian
neural networks (BNN), deep ensemble methods and deterministic
uncertainty estimation methods in terms of the stability, accuracy
and efficiency of predictive uncertainty.
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