Learned simulators that satisfy the laws of

Thermodynamics

We learn physics from data...

* When data refer to phenomena that conserve some quantities (typically,
energy), it is easy to enforce this conservation.

» This can be done by enforcing the symplectic (Hamiltonian) structure of
the dynamics:
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with E the energy of the system and L the symplectic (Poisson) matrix.
» But, how to proceed with dissipative phenomena?

. While enforcing the right thermodynamic
structure

 This can be done by enforcing a metriplectic structure on the dynamics:
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« with L skew-symmetric and M symmetric, positive semi-definite.
* An additional constraint is necessary (degeneracy conditions):

0S5 OF
— =M-—=0.
0z 0z
* This ensures the fulfilment of the first and second principles of
thermodynamics.
* This is the so-called GENERIC formalism (Grmela and Oettinger, 1997).
« We augment the loss function with the fulfillment of the degeneracy

conditions:

L3 = ||Ln - DSal[3 + ||Mn - DE4|f5:

» Together with error and regularization terms, gives rise to
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Example: tire facing a step

6962 nodes
5283 elements

* As a proof-of-concept, we consider the problem of a non-linear, viscous-
hyperelastic tire facing a step.
« Pseudo-data are taken from high-fidelity simulations.

Architecture of the network

« We first unveil the intrinsic dimensionality of data with a sparse
autoencoder (step 1).

Step 1: Train Sparse-Autoencoder
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Step 2: Train GENERIC Integrator
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« We then learn a structure-preserving neural network (SPNN) on these
low-dimensional data (step 2).
« This SPNN behaves as an energy-entropy-momentum integrator.

* Given the (low-dimensional) variables x at time ¢, it produces x at time 7+1.
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Results
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« Error 0(10-4) with only 9 dofs, compared with the original 49680 dofs.
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« The more physics you enforce, the more accurate results you obtain and
the less data you will need:
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Drafts and links to GitHub of the project:



https://www.sciencedirect.com/science/journal/00219991/426/supp/C

