
Learned simulators that satisfy the laws of 
Thermodynamics

We learn physics from data…

• When data refer to phenomena that conserve some quantities (typically, 
energy), it is easy to enforce this conservation. 

• This can be done by enforcing the symplectic (Hamiltonian) structure of 
the dynamics: 

                                     
   with E the energy of the system and L the symplectic (Poisson) matrix. 
• But, how to proceed with dissipative phenomena? 

• As a proof-of-concept, we consider the problem of a non-linear, viscous-
hyperelastic tire facing a step. 

• Pseudo-data are taken from high-fidelity simulations.

Example: tire facing a step

Drafts and links to GitHub of the project: 
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… while enforcing the right thermodynamic 
structure

• This can be done by enforcing a metriplectic structure on the dynamics: 

                                   
• with L skew-symmetric and M symmetric, positive semi-definite. 
• An additional constraint is necessary (degeneracy conditions): 

                                     
• This ensures the fulfillment of the first and second principles of 

thermodynamics. 
• This is the so-called GENERIC formalism (Grmela and Oettinger, 1997). 
• We augment the loss function with the fulfillment of the degeneracy 

conditions: 

                     
• Together with error and regularization terms, gives rise to 

Architecture of the network

• We first unveil the intrinsic dimensionality of data with a sparse 
autoencoder (step 1).

• We then learn a structure-preserving neural network (SPNN) on these 
low-dimensional data (step 2). 

• This SPNN behaves as an energy-entropy-momentum integrator. 
• Given the (low-dimensional) variables x at time t, it produces x at time t+1.

Results

• Error O(10-4) with only 9 dofs, compared with the original 49680 dofs. 

• The more physics you enforce, the more accurate results you obtain and 
the less data you will need:  

       

https://www.sciencedirect.com/science/journal/00219991/426/supp/C

