
Towards an Operationally Meaningful, Explainable 
Emulator for the Boussinesq equation  

Introduction
The demand for emulators of expensive computational models is rapidly 
surging, as search, optimization, and uncertainty quantification tasks 
become increasingly more relevant than the computation of single 
simulation configurations. I investigate the feasibility of an emulator for a 2D 
coastal inundation model, based on a Variational Autoencoder (VAE) 
architecture proposed recently. The VAE’s ability to predict the relationship 
between the model controls and the observed water levels at a predefined 
location is tested, and its applicability towards the construction of an 
emulator is discussed.

I train a β-VAE with a 60-neuron input layer, a 1-neuron output layer, a two-
level encoder and decoder of size nlayer, and a latent representation of size 
nlatent (the architecture corresponds to Figure 1(b) in Iten et al. (2020), 
except for the question neuron, which I omit). I illustrate the result of this 
procedure, for various values of nlatent, nlayer, and β, in the table below.

Results

Simulation model
The base configuration involves a two-level coastal profile, representing 
land and sea on either side of a straight stretch of coast, shielded in part by 
a straight, infinite-height levee parallel to the coast. The water height’s 
initial configuration is that of a plane wave, also parallel to the coast. The 
simulation computes the evolution of the water level everywhere on the 
domain, as the initial profile marches inwards toward sthe coast and waves 
are scattered around the domain. The model specification is summarised in 
the table below, and a snapshot of the evolution is shown in Figure 1.

Conclusions

This work was supported by the STFC Hartree Centre’s Innovation Return on Research programme, 
funded by the Department for Business, Energy & Industrial Strategy. The author also acknowledges 
a UKRI Future Leaders Fellowship for support through the grant MR/T041862/1.

References
Raban Iten et al. (2020), Discovering Physical Concepts with Neural Networks, Phys. Rev. Lett., 124(1):010508 

S. Brandt, https://bitbucket.org/stevenrbrandt/cajunwave (Simulation code) 

E. Bentivegna, https://zenodo.org/record/4728023 (Simulation dataset)

Eloisa Bentivegna 
IBM Research Europe 
eloisa.bentivegna@ibm.com

ICLR 2021 Workshop 
Deep Learning for Simulation (simDL) 

Figure 4

A key question to investigate is whether the latent representations in the 
trained network are able to highlight the principal features of the map 
between levee geometry and water height, and might potentially be used to 
model this relationship in an accurate, explainable, and generalizable way. In 
particular, it is interesting to observe the role of the parameter β, as this is 
supposed to influence the distribution of simulations in the latent space 
directly. In Figure 3, I plot the values of the network’s latent neurons, r1 and 
r2, for all the simulations in two representative datasets: one from 
configuration a and one from configuration h.

Depending on the value of β, more or less interpretable representations of 
the model parameters can be obtained. Therefore, using the decoder part of 
the trained networks as a simulation emulator appears feasible, so long as 
clear relationships between configuration parameters and latent neurons 
can be established, as in the left panel of Figure 3.
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I construct a dataset of 12,006 simulations by perturbing this basic setup. 
The variation consists of a parametrized deformation of the levee, modelled 
by a sinusoidal displacement: 

A few, randomly chosen simulations are shown in Figure 2.
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 In Figure 3, the predictions of one of the trained networks for configuration 
a are shown.

https://bitbucket.org/stevenrbrandt/cajunwave
https://zenodo.org/record/4728023
mailto:eloisa.bentivegna@ibm.com

