Hard Encoding of Physics for Learning Spatiotemporal Dynamics

Chengping Rao¹, Hao Sun², Yang Liu¹

¹Department of Mechanical & Industrial Engineering, Northeastern University
²Department of Civil & Environment Engineering, Northeastern University
{rao.che, h.sun, yang1.liu}@northeastern.edu

Spatiotemporal Data-driven Modeling

- A dynamical system $u_t = F(x, t, u, u^2, \nabla u, \nabla^2 u, \ldots)$ unknown

Given:
- Low-resolution and noisy measurements;
- Optionally, prior knowledge on the system.

Objectives:
- To establish a data-driven model that gives high-resolution (spatially and temporally) prediction;
- The data-driven model generalizes well.

Boundary Encoding

- BCs (if available) are forcibly encoded to ensure solution accuracy

Element-wise Product Layer

- Π-block approximation

$$F(u) = \sum_{c=1}^{N_c} f_c \prod_{l=1}^{N_l} D^{(C_l)} \odot u$$

- Benefits
 - Multiplicative form makes the learned model more interpretable;
 - Enables a better approximation to nonlinear terms like uu_x and $u \cdot \nabla u$.

Physics-encoded Recurrent Conv Neural Network (PeRCNN)

Network architecture

- Initial state generator (ISG)
- Recurrent block (II-block)

Components
- ISG: to generate high-res initial condition;
- II-block: recurrent block to update state variables.

Design intuitions
- Residual connection mimics forward Euler scheme;
- Physics-based Conv layer encodes existing terms in F;
- Element-wise product layer approximates nonlinear terms better.

Numerical Experiments

- **Baselines:** ConvLSTM, Deep Hidden Physics Model (DHPM) and Recurrent ResNet

- PeRCNN outperforms the baselines on accuracy;
- PeRCNN generalizes well beyond the training region where no data is available.

References