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Rediscovering Newton's gravity and Solar 
System properties using deep learning 
and inductive biases
Introduction
We show how ML methods can exploit established scientific frameworks to 
discover accurate physical laws and unobserved properties, in an 
analogous fashion to how scientists develop theories consistent with 
observations. Our approach is based on the framework introduced by 
(Cranmer et al., 2019; Cranmer et al., 2020) which used a combination of 
graph networks (GN) (Battaglia et al. 2018) and symbolic regression. The 
key principle is that the “edge function’" within the GN has a 
correspondence to forces. By training a GN to simulate orbital dynamics 
from real data, we were able to extract the edge function and correctly infer 
the formula for Newtonian gravitation. We also structured the GN-based 
simulator to predict accelerations by multiplying the model output by a 
scalar variable fit during training (corresponding to force = mass X 
acceleration) and found the learned scalars were proportion to the orbital 
bodies' true masses.

• Data: We use Solar System data from NASA's HORIZONS On-Line Ephemerys 
System. We extract orbits for the Sun, all planets, and the moons that have a 
mass above . In total, our problem consists of 31 bodies, listed in Fig. 3. 

• Loss function: Due to the varying orders of magnitude in our target data 
(accelerations), we weighted the loss function by the true accelerations. 

• Spherical coordinates & exponentials: To deal with the large data ranges, we 
converted vectors to spherical coordinates, and took the logarithm of the 
magnitudes. We also exponentiate the learned scalars before converting forces 
to accelerations.  

• Data augmentation: During training, we perform a random 3D rotation of the 
data at each step. This allows us to augment the data, and solves the issues of 
incomplete orbits in the data. 

• Different biases: We attempted to repeat the process relaxing the Force = mass 
X acceleration, however in this case our algorithm learns an arbitrary function of 
the mass, which means the symbolic regression no longer works. 
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Fig. 3: Comparison of the learned scalars v_k relative to the Sun and the known logarithmic masses.

Fig. 1: Summary of our two-steps approach.
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Approach
Our two-step approach---training a GN-based simulator, then using  
symbolic regression to find analytical formulae for forces---is summarized in 
Fig. 1: The input is a GN with given distances as edges, and nodes with 
learnable scalar properties. The GN updates the edges of this graph to 
compute forces. We then sum over all forces acting on each body 
(assuming that ) and divide by the nodes, to get accelerations. The 
loss function is obtained by comparing this predicted acceleration and the 
true acceleration. The function that the GN learned to update the edges is 
also used to recover an algebraic force using a symbolic regression 
algorithm. 

Fi, j = − Fj,i

Fig. 2: Left: data from the bodies of the inner Solar System. Right: same bodies evolved from same initial conditions using 
the learned interaction. 

Results & Conclusions
Our MLP successfully finds an interaction between bodies that matches the 
observed acceleration. This shows that GNs can learn interactions not only 
from simulations, but also from real data (Fig. 2).  
The scalar properties learned by our MLP, which are learned during training 
and multiplied by the forces to compute the accelerations, are shown in Fig. 
3 along with the masses per body. When applying the symbolic regression 
we recover Newton's law of gravity. 
Our results show that our two-step approach is a viable tool for discovering 
physical laws from real observations. Even though the law we discovered is 
already know, the purpose of this work is to confirm that known laws are 
discoverable with our method. This is a key step toward building more 
sophisticated tools for automating the process of scientific discovery, in 
particular data-driven theory formation and evaluation.
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