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Introduction L - Results & Conclusions
1.0 - -
We show how ML methods can exploit established scientific frameworks to 05 - | Our MLP successfully finds an interaction between bodies that matches the
discover accurate physical laws and unobserved properties, in an 2 - | observed acceleration. This shows that GNs can learn interactions not only
analogous fashion to how scientists develop theories consistent with . _0'5 _ _ from simulations, but also from real data (Fig. 2).
observations. Our approach is based on the frarnework mtroducgd b_y 104 | The scalar properties learned by our MLP, which are learned during training
(Cranmer et al., 2019; Cranmer et al., 2020) which used a combination of ' L . N
, , , and multiplied by the forces to compute the accelerations, are shown in Fig.
graph networks (GN) (Battaglia et al. 2018) and symbolic regression. The —1.57 ] . . . .
L ) e 3 along with the masses per body. When applying the symbolic regression
key principle is that the “edge function™ within the GN has a —2.0 . . . 1 1 1 \ .
. _ _ _ —2 ~1 0 1 2 —2 ~1 0 1 2 we recover Newton's law of gravity.
correspondencs fo forces. By training a SN to S|mulat.e orbital dynam|c§ X (AU X AU Our results show that our two-step approach is a viable tool for discoverin
from real data, we were able to extract the edge function and correctly infer Fig. 2 Loft data from the badies of the innar Soler Systam. Right: same badies avolved from same iniial condltions using _ _ _ 9
the learned interaction.
the formula for Newtonian gravitation. \We also structured the GN-based physical laws from real observa.tlons. EYe” tho“Qh the law we discovered is
simulator to predict accelerations by multiplying the model output by a Methods allready know, t.he purpose of th|s.wr>rk s to confirm that kngvyn laws are
scalar variable fit during training (corresponding to force = mass X discoverable with our method. This is a key step toward building more
acceleration) and found the learned scalars were proportion to the orbital * Data: We use Solar System data from NASA's HORIZONS On-Line Ephemerys sophlstlcated toolls for automating the process of sqentlflc discovery, in
bodies' true masses. System. We extract orbits for the Sun, all planets, and the moons that have a particular data-driven theory formation and evaluation.
mass above 10'*M,,. In total, our problem consists of 31 bodies, listed in Fig. 3. True object mass M and learned scalar v
Approach | S g K TogaMs
* Loss function: Due to the varying orders of magnitude in our target data Vk =~ Vo
Our two-step approach---training a GN-based simulator, then using (accelerations), we weighted the loss function by the true accelerations. =207 *
symbolic regression to find analytical formulae for forces---is summarized in « Spherical coordinates & exponentials: To deal with the large data ranges, we ~7.5 1 ’ﬁ" | S ’M’ * 4 ¥ ¥ * 1 ii |
Fig. 1: The input is a GN with given distances as edges, and nodes with converted vectors to spherical coordinates, and took the logarithm of the ~10.01 + ¥ * ¥ | | * T 7 l )
learnable scalar properties. The GN updates the edges of this graph to magnitudes. We also exponentiate the learned scalars before converting forces N S o I O A A l | l I I )
compute forces. We then sum over all forces acting on each body to accelerations. SSE P 9° 8385835888 8353833 355888355
. - Ny . CSE LS S EFFSs TR 988 E8LIeERLF
(assumlng th?t Fi’f__ Fi;) and d'V'de_ by the node.s, to get accel.eratlons. The  Data augmentation: During training, we perform a random 3D rotation of the g5 ST 4 f ¢ o= g " SeLS SETsF o
loss function is obtained by comparing this predicted acceleration and the data at each step. This allows us to augment the data, and solves the issues of | | | *{Moon-fr.eeT.pIanets or single moons}
true acceleration. The function that the GN learned to update the edges IS incomplete orbits in the data. Fig. 3: Comparison of the learned scalars v_k relative to the Sun and the known logarithmic masses.
::Z(c))rlijtf\?r(\j 10 recover an algebraic foree using & symbolic regression » Different biases: We attempted to repeat the process relaxing the Force = mass Main References
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Fig. 1: Summary of our two-steps approach.



