Learning Operations for Neural PDE Solvers

Nicholas Roberts*, Mikhail Khodak*, Tri Dao, Liam Li, Christopher Ré, Ameet Talwalkar * Equal contribution; CMU, Stanford, Determined AI

Contributions

XD-operations:

A neural architecture search-inspired efficient relaxation of convolutions based on their DFT diagonalization.

Theoretical properties:

- efficient to store and apply (log-linear in the input size)
- can express numerous different operations, including convolutions, graph convolutions (Kipf & Welling, 2017), and FNOs (Li et al., 2021)

Empirical properties:

• when initialized as random convolutions, XD-operations learn a more accurate PDE solver than FNOs on three sets of equations

XD-operations

filter weights Key idea: replace the DFTs in the standard $Conv(w)(x) = A_w x$ diagonalization of a convolution by a more DFT general family of $\operatorname{diag}\left(\mathbf{F}\underline{\mathbf{w}}\right)\mathbf{F}\mathbf{x}$ $= \mathbf{F}$ efficient matrices $\mathbf{XD}^{\mathbf{1}}_{\alpha}(\mathbf{w})(\mathbf{x}) = \operatorname{Real}\left(\mathbf{K}\operatorname{diag}\left(\mathbf{L}\underline{\mathbf{w}}\right)\mathbf{M}\mathbf{x}\right)$

FFT-like product of small factor matrices

Provably expresses any efficient matrix-vector operation:

- sparse
- low-rank
- permutation
- DFT
- DCT
- wavelet transform

Specifically, Kaleidoscope (K-) matrices (Dao et al., 2020)

Properties

Efficiency:

- asymptotically, takes time log-linear in the input size to store and apply
- empirically, 3-5x slower than convolutions, with scope for improving performance.

Expressivity:

If viewed as an architecture search space, XD-operations contain

- convolutions of all types
- graph convolutions for fixed graphs
- average pooling
- skip-connections
- Fourier neural operator
- convolution composed with permutation
- infinitely many more operations

Experimental setup

Model: ResNet-like backbone model from Li et al. (2021)

Tasks: learn a mapping from initial conditions to solutions using data generated by a classical PDE solver for

- Burgers' equations (1d)
- Darcy flow (2d)
- 2d Navier-Stokes (3d)

Training:

- train regular model weights using routine from Li et al. (2021)
- simultaneously train K-matrices using SGD with momentum

Method	$\nu = 10^{-4}$ $T = 30$
CNN-3d backbone	0.325
FNO-3d (reproduced)	0.182
CNN-3d backbone XD	0.172

Next steps

Efficiency:

References

Dao et al. Kaleidoscope: An efficient, learnable representation for all structured linear maps. ICLR 2020. Kipf & Welling. Semi-supervised classification with graph convolutional networks. ICLR 2017. Li et al. Fourier neural operator for parametric partial differential equations. ICLR 2021.

Results

ICLR 2021 Workshop Deep Learning for Simulation (simDL)

 improve efficiency by improving padding and ablating individual K-matrices handling transfer to different grids and irregular meshes initializing with other operations such as graph convolutions

