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Abstract

Machine learning (ML) force field models for molecular dynamics (MD) simulations often suffer from poor system
stability with instabilities such as atom clustering that must be corrected by active learning approaches. However,
the correlation between the structural and chemical complexity of a multi-component systems and the robustness of
long-time ML-based MD dynamics has not been studied in detail. We develop graph neural network (GNN) model
for SiC and GeSe2 systems to perform classical MD simulations with quantum mechanical accuracy. A GNN model is
sufficient to ensure robust long-time dynamics in a ‘simple’ system like SiC. However, we need additional inductive
bias, in the form of energy decomposition into 2-body and 3-body terms to generate stable MD trajectories for
complex GeSe2 systems, which can exist in multiple metastable atomic configurations.
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Conclusions

Ø Developed a GNN model to perform classical MD simulations with quantum mechanical accuracy.
Ø For a ‘simple’ system like SiC, a GNN model is sufficient to have robust long time MD dynamics.
Ø For complex systems such as GeSe2 with multiple metastable configurations in its potential energy

surface, decomposition of total energy into 2-body, 3-body and many-body (GNN) terms is needed
to create models that generate stable MD trajectories.
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Results

ØAb-initio molecular dynamics (AIMD), which computes interatomic forces quantum mechanically is commonly 
used to study materials properties. 

Ø However, AIMD is expensive and scales as 𝑶 𝑵𝟑 with the number of electron 
ØClassical molecular dynamics simulation (MD)  is commonly used to simulate large systems, which scales linearly 

with number of atoms and models each atom as point mass with point charge. 
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Molecular Dynamics Basics 

Basics of the molecular-dynamics (MD) method1-3 are described, along with corresponding data 

structures in program, md.c. 

Newton’s Second Law of Motion 

TRAJECTORY, COORDINATE, AND ACCELERATION 

• Physical system = a set of atomic coordinates: 
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{
 
r i = (xi ,yi ,zi ) | xi ,yi ,zi ∈ℜ,i = 0,...,N −1} , 

where ℜ  is the set of real numbers (in the program, represented by a double precision variable) and we 

use a vector notation, 
  

r 
r 
i
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(Data strcutures in md.c) 

int nAtom:  N, the number of atoms. 

NMAX:  Maximum number of atoms that can be handled by the program. 

double r[NMAX][3]:  r[i][0], r[i][1], and r[i][2] are the x, y, and z coordinates of the i-th atom, 

where i = 0, .., N-1. 
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• Trajectory: A mapping from time to a point in the 3-dimensional space, 
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t ∈ ℜ
 
r i (t)∈ ℜ3 .  In 

fact, a trajectory of an N-atom system is regarded as a curve in 3N-dimensional space.  A point on the 

curve is then specified by a 3N-element vector, 
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N
= (x0,y0,z0,x1,y1,z1,...,xN−1,yN−1,zN−1). 
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• Velocity: Short-time limit of an average speed (how fast and in which direction the particle is 

moving), 
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double rv[NMAX][3]:  rv[i][0], rv[i][1], and rv[i][2] are the x, y, and z components of the 

velocity vector, 
  

r 
v 

i
, of the i-th atom. 

• Acceleration: Rate at which a velocity changes (whether the particle is accelerating or decelerating), 
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Solve Newton's 
equation of motion V = potential function, non-trivial and system specific 

Goal
ØDesign a Graph Neural Network(GNN) based potential function for MD simulation at AIMD level accuracy 
Ø Incorporate inductive bias - two-body and three-body interaction - into GNN model for robust MD dynamics  
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Ø 𝑬𝑵𝑵𝟐 and 𝑬𝑵𝑵𝟑 uses cutoff distance of 𝑹𝒄 =
𝟑Å for neighbor list 𝑵𝑵𝑹𝒄 , whereas cutoff 
of 𝑹𝑮𝑵𝑵 = 𝟕Å is used in GNN layers.

Ø Hierarchical training strategy is used for 
𝑬𝑵𝑵𝟐 , 𝑬𝑵𝑵𝟑 and 𝑬𝑮𝑵𝑵.

Ø MD simulation is performed with velocity-
Verlet algorithm in NVT ensemble.

Ø Atomic coordinates are updated as 
𝑹𝒊𝒌 𝒕 + 𝜹𝒕 = 𝑹𝒊𝒋𝒌 𝒕 + 𝒗𝒊𝒌𝜹𝒕. Here, 𝒗𝒊𝒌 is 
updated using 𝒂𝒊𝒌 = 𝑭𝒊𝒌/𝒎𝒂𝒔𝒔𝒊

Ø For simple system such as Silicon Carbide (SiC), GNN model without any inductive bias is sufficient
to learn robust potential function for MD simulation.

Ø Learned 𝑭𝒊𝒋 𝒓𝒊𝒋 and potential energy (PE)  of 512 atom SiC in MD after training.
Ø RMSE energy on energy was 2.5 meV/atom and 2.3 meV/atom respectively, on training and test data.

Ø Germanium Selenide (GeSe2) is a complex phase-change material that has multiple crystalline
configuration and several non-equivalent atomic positions and oxidation state for anions.

Ø Learned 𝑭𝒊𝒋 𝒓𝒊𝒋 and PE for 384 atom GeSe2 in MD simulation using GNN along and with energy 
decomposition 𝑬𝑮𝑵𝑵 + 𝑬𝑵𝑵𝟐 + 𝑬𝑵𝑵𝟑

Ø Se-Se interaction is attractive between 𝟐 − 𝟑Å. The attractive interaction happens between inter-
layer Se atoms. Without energy decomposition, system shows Se-Se clustering in MD.

Ø Decomposing energy into 2-body and 3-body not only decreases RMSE errors but also make MD 
simulation stable. 

Model Training Test

𝑬𝑮𝑵𝑵 2.16 2.48

𝑬𝑮𝑵𝑵
+ 𝐄𝐍𝐍𝟐
+ 𝐄𝐍𝐍𝟑

1.06 1.64

Energy (meV/atom)

Ø MD stability is dependent upon learned local interaction 𝑭𝒊𝒋 𝒓𝒊𝒋 between atoms during 
training such that  total force 𝑭𝒊 = ∑𝒋𝑭𝒊𝒋 𝒓𝒊𝒋


