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Summary

This work proposes a novel prediction interval (PI) method for
uncertainty quantification (UQ) of regression neural networks
(NNs). The method requires no distributional assumption, does
not introduce extra hyper-parameters, and can effectively
identify out-of-distribution (OOD) samples and quantify their
uncertainty.
We demonstrate the advantages of our method in a toy
regression task with non-Gaussian noise and two real-world
scientific applications, in comparison with two state-of-the-art
UQ methods—a quality-driven (QD) approach (Pearce et al.,
2018) and a deep ensemble (DE) method (Lakshminarayanan
et al., 2017).

Our Method
For a standard regression task, 𝑦 = 𝑓𝒘 𝒙 : ℝ" → ℝ, with a 
given dataset 𝒟#$%&' = 𝒙& , 𝑦& &()

*

Goal: Learn the function 𝑓𝒘 𝒙 and the prediction intervals 
(PIs) to quantify the uncertainty of the prediction

Key idea: Learn 𝑓𝒘 𝒙 , the upper and lower bounds of the PI 
separately using three independent NNs.

Step 1: Train 𝑓𝒘 𝒙 NN with dataset 𝒟#$%&' = 𝒙& , 𝑦& &()
* using 

mean squared error (MSE) loss
Step 2: Obtain two new datasets from 𝑓𝒘 𝒙 NN 

𝒟+,,-$ = 𝒙& , 𝑦& − 𝑓𝒘 𝒙& |𝑦& ≥ 𝑓𝒘 𝒙& , 𝑖 = 1,… ,𝑁
𝒟./0-$ = 𝒙& , 𝑓𝒘 𝒙& − 𝑦& |𝑦& < 𝑓𝒘 𝒙& , 𝑖 = 1,… ,𝑁

Step 3: Train two new NNs—𝑢𝜽 𝒙 and 𝑣𝝃 𝒙 —to represent 
the upper and lower uncertainty profiles with the two 
datasets 𝒟+,,-$ and 𝒟./0-$, respectively, using MSE 
loss

Step 4: Find two coefficients 𝛼 and 𝛽 such that a target 
percentage 𝛾 of training samples are covered by the 
PI, [𝑓𝒘 − 𝛽𝑣𝝃, 𝑓𝒘 + 𝛼𝑢𝜽]

Step 5: Get the final PI as [𝑓𝒘 − 𝛽𝑣𝝃, 𝑓𝒘 + 𝛼𝑢𝜽]
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A Toy Regression With Non-Gaussian Noise

Our method and QD outperform DE by producing
tighter bounds on in-distribution (ID) data, as both
methods do not impose assumptions on the noise
distribution. Our method and DE outperform QD in
OOD region by providing more reasonable (wider) PIs.

An OOD-aware Autoencoder-based Combustion Model
PIs are calculated for an
autoencoder NN for
datasets of syngas CO/H2
combustion with 12
thermo-chemical state
variables. ID test set is
from a 0-D reactor and
OOD test set is from a 3-D
direct numerical
simulation (DNS) of
turbulent flames.
DE with a single run in the
first row fails to capture
the difference in
uncertainties for ID and
OOD samples. DE with 10
runs in the second row
shows improved but still
limited separation of OOD

samples from ID and it fails to produce the uncertainty-error correlation.
Our method in the third row shows a strong correlation between the
uncertainty and the error, and clearly demonstrates that OOD and ID
have different uncertainty magnitudes.

An Earth System Land Model

PIs are calculated for surrogate models of ten variables
from the Earth System Land Model (ELM) simulations.
Two metrics—prediction interval coverage probability
(PICP) and mean prediction interval width (MPIW)—are
used for comparison. A sound PI method should have a

PICP close to the targe value with a
small MPIW. Our method outperforms
QD by providing PICP closer to the
90% target and MPIW on average
60% narrow.
PICP and MPIW provided by QD are
sensitive to the hyper-parameters. Our
method does not need hyper-
parameter fine tuning but QD does.
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