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Active learning algorithm filters the data with
higher uncertainty to explore

Surrogate models for partial-differential equations are widely used in the
design of metamaterials to rapidly evaluate the behavior of composable
components. However, the training cost of accurate surrogates by machine
learning can rapidly in-crease with the number of variables. We present an
active learning algorithm and apply it to train deep surrogates of
Helmholtz's equation and linear elasticity in solid mechanics. For the two
problems of interest, our algorithm reduces the number of simulations
required compared to uniform random samples by more than an order of
magnitude for a neural-network surrogate model and by four, respectively.
Results show that the surrogate evaluation is faster than a direct solve by
over two orders of magnitude and over five orders of magnitude,
respectively.

Surrogate model

A predictive model and an uncertainty quantification model.

We iteratively rain a surrogate model and an uncertainty model

concomitantly, to approximate a target physical response and measure the
error of the model, respectively.

In the experiments below, the predictive and the uncertainty quantification
model are combined into a heteroscedastic regression model. Where the
prediction is the estimated mean, and the measure of error is the estimated
variance.
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NB: the uncertainty quantification model only needs to be a monotonic
increasing function of the true error of the model, because it is only used for
ordering.

NB: The uncertainty quantification model of the heteroscedastic regression
loses meaning interpolating regime, because the error becomes identically
zero and does not take into account generalization error.
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Linear elasticity (speedup x1.5e5)

Input: ny,;, 7', M, K

Result: the surrogate model #(p) (y, and 7,)

Py = ninit, points chosen from a random uniform distribution;

Solve PDE for each pointin Py; // expensive step

Create the first iteration of the labeled training set 7 So;

Train the ensemble f"(p) on 7Sy

fori = 1.7 do
R; =M x K points chosen from a random uniform distribution ;
Compute the error measures o'~ (p) using 1,V p € R;; // cheap step
P; = select K points in R; with the highest error measures o~ !;
Solve PDE for each points in P; and get t(p), Vp € P;; // expensive step
Augment the labeled training set with new labeled data 7S;;
Train the ensemble '(p) on 7'S; with warm start of #7!;

end
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