
Deep Discrete-Time Lagrangian Mechanics

Method: Proposed Approach

Experiments and Results
Table 2: The variance of modeled energy.
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Introduction
Goal: a deep neural network that

• learns the physical dynamics only from the position.
• ensures the energy conservation laws strictly in discrete time.

Proposed approach
• models discrete-time Lagrangian mechanics, which is expressed only with the 

position.
• ensures the energy conservation laws strictly in discrete time by the automatic 

discrete differential (AAD) algorithm [3].

Background
• Recent studies demonstrated that neural networks learn the physical dynamics 

associated with the conservation law of energy in continuous time [1].
• The energy is no longer conserved after numerical integrators discretize the time 

for computer simulations.
• Symplectic integrators conserve a modified energy and a discrete gradient 

method conserves energy strictly in discrete time [2; 3].
• They need velocity or momentum but measuring an accurate velocity is 

troublesome.
• Without an accurate velocity, a learned dynamics may be greatly different from 

the teacher system.
• The Verlet method is a symplectic integrator and depends only on the position.
• No method that conserves energy strictly in discrete time is available when only 

the position is available.

!∇𝑇 is a discrete gradient of 𝑇.  

Method: Theory 

• The potential energy 𝑉 is expressed as a function of the position 𝒒.
• The kinetic energy 𝑇 is expressed as a function of the velocity �̇� or momentum 𝒑.

Hamiltonian mechanics
A system 
• has a state 𝒖 = 𝒒, 𝒑 .
• has a Hamiltonian ℋ = 𝑇 + 𝑉.
Hamilton’s equation 
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= ∇𝒑𝑇,
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= ∇𝒒𝑉 ensures 

the conservation law of energy.
For conserving energy strictly in discrete time, a discrete gradient has been 
employed [4].  

Hamiltonian mechanics in discrete time 
with a discrete gradient
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Hamiltonian mechanics 
in continuous time
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Lagrangian mechanics
A system
• has a state 𝒖 = 𝒒, �̇� .
• has a Lagrangian ℒ = 𝑇 − 𝑉.
Euler-Lagrangian equation 
!
!#
∇'̇𝑇 = ∇'𝑉 ensures 

the conservation law of energy.

Table 1: Mean squared errors averaged over 15 trials across all three tasks.

Figure 1: Results. (top) Position 𝒒. (center) True energy. (bottom) Energy modeled by each model (modeled energy). 

Target system

• Eliminating the momentum from Hamiltonian mechanics in discrete time.

• The potential energy 𝑉 is modeled by a neural network.
• A discrete gradient #∇'𝑉 is obtained by the ADD algorithm [3]. 
• 𝑀 is a mass matrix.

Since the proposed equation (1) converges to the Euler-Lagrangian equation, it is 
considered as a discrete-time Lagrangian mechanics.

• learns the physical dynamics only from the position by modeling a discrete-time 
Lagrangian mechanics.

• ensures the conservation law of energy strictly in discrete time using a discrete 
gradient.

• Minimizing mean squared error between left- and right-hand sides of Eq. (1).

• A next state is estimated by implicitly solving Eq. (1).

Proposed: discrete-time Lagrangian mechanics
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Hamiltonian mechanics in discrete time with a discrete gradient
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Method

Proposed approach

Training

Prediction

• mass-spring system, pendulum system, and 2-body system

• Euler method, symplectic Euler method, and leapfrog integrator
• “leapfrog + proposed” use leapfrog integrator for training and the proposed 

approach for prediction.

• The proposed approach and the leapfrog integrator predict the state at a similar 
level.

• For the mass-spring and pendulum systems, the proposed approach conserves 
energy accurately, symplectic Euler method and leapfrog integrator conserve a 
modified energy only from the position but they do not conserve energy strictly.

• For the 2-body system, “leapfrog + proposed” conserves energy accurately.
• The proposed approach conserves modeled energy.
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