Multigrid Solver with Super-Resolved Interpolation

Abstract

The multigrid algorithm is an efficient numerical method for solving a variety of elliptic partial differential equations (PDEs). The method damps errors at progressively finer grid scales, resulting in faster convergence compared to standard iterative methods. The prolongation, or coarse-to-fine interpolation operator within the algorithm lends itself to a data-driven treatment with ML super resolution. We (i) propose the novel integration of a super resolution generative adversarial network (GAN) model with the multigrid algorithm as the prolongation operator and (ii) show that the GAN-interpolation improves the convergence properties of the multigrid in comparison to cubic spline interpolation on a class of multiscale PDEs typically solved in physics and engineering simulations.

Introduction

- Improving heuristic operators within existing formally derived numerical methods can allow for computational gains, easier implementation, and more rapid deployment in codes.
- Multigrid (MG) methods are attractive due to their ability to efficiently reduce errors at multiple scales.
- The prolongation (interpolation) operator lends itself to a data-driven treatment, as is it similar to super-resolution operators in image analysis.

Multigrid parameters:

N_{smooth.pre}: smoothing iterations before solving

N_{smooth}: smoothing iterations between MG steps.

 N_{step} : Restriction/interpolation of grid size by 2^(2N_{step}) factor

R_{min}: Side length of coarse grid.

Schematic for a two-level multigrid algorithm. Figure adapted from Chen et al. (2001).

Equations

Physical system and training data

- We focus on the pressure-Poisson formulation of the incompressible Navier-Stokes (NS) equations.
- Using a two-level multigrid method, we solve a Poisson equation for pressure *p* and a source term f(x,y), which is a function of the fluid velocity u and viscosity v.

 $\nabla^2 p = \nabla \cdot (\nu \nabla^2 u - (u \cdot \nabla)u) = f(x, y)$

Francisco Holguin^{1,2}, Sidharth GS², Gavin Portwood³

¹University of Michigan—Ann Arbor, Dept. of Astronomy ²Los Alamos National Laboratory ³Lawrence Livermore National Laboratory

Proposal

Conclusion

- Physical system and training data
- We produce a set of 200 pairs of pressure and source term grids by directly solving the NS equations.
- We select 1000 training grids with random restrictions of the data
- We transform the log of the grid values to the range [-1,1] using the global min and max of all the pressure grids.

GAN prolongation structure and implementation

1) Find the max and min data of the grid, and normalize the data to [-1,1], using a symmetric log function.

- 2) Divide the normalized coarse gird into overlapping windows (n_s^2 kernel, with stride = 2) 3) Apply GAN prolongation operator to produce a set of n_{L}^2 window kernels.
- 4) Construct the fine grid by assigning the central $(n_s+2)^2$ window to the fine grid. Any nonoverlapping areas are assigned to the appropriate value.

Example of the first 15 iterations of the MG method solving for the pressure. Top: Interpolation with traditional spline interpolation, Bottom: GAN interpolation

Both examples of spline vs. GAN-based MG show progression to the same solution. • Visually, the GAN-based MG solver contains higher frequency information at earlier iterations compared to to the spline-based MG.

References

D.	E
S.	(
no	n
I.J	
рр	
C.	l
IEI	E
U.	-
Q.	١
Re	;)

ICLR 2021 Workshop Deep Learning for Simulation (simDL)

• In this proof-of-concept, the MG method with GAN interpolation on average converged just as fast as with standard interpolation.

• For some grids, the GAN interpolation converged faster than the spline version, but for others, it converged slower.

• With the spline-based interpolation, the MG is unable to capture high to mid-

frequency information at early times, while the GAN-based version contains higher frequency information at earlier times.

. Birla. (2019). URL: https://github.com/deepak112/Keras-SRGAN

Chen and W. Sun. (2001). "Application of the multigrid method in a flexible hybrid coordinate in a nhydrostatic model" Monthly Weather Rev. 129. pp. 2660-2676.

. Goodfellow et al. (2014). "Generative adversarial networks" Adv. Neural Infomration Processing. Systems 27. 2672-2680

Ledig et al. (2017). "Photo-realistic single image super-resolution using a generative adversarial network" EE Conference on Comp. Vision and Pattern. Reg. pp 4681-4690

Trottenberg, C. W. Oosterlee, and A. Schuller. (2001). "Multigrid"

Wei, Y. Jiang, and J.Z.Y. Chen. (2018). "Machine-learning solver for modified diffusion equations" Physical eview E. 98.