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Abstract
The multigrid algorithm is an efficient numerical method for solving a variety of elliptic 
partial differential equations (PDEs). The method damps errors at progressively finer grid 
scales, resulting in faster convergence compared to standard iterative methods. The 
prolongation, or coarse-to-fine interpolation operator within the algorithm lends itself to a 
data-driven treatment with ML super resolution. We (i) propose the novel integration of a 
super resolution generative adversarial network (GAN) model with the multigrid algorithm 
as the prolongation operator and (ii) show that the GAN-interpolation improves the 
convergence properties of the multigrid in comparison to cubic spline interpolation on a 
class of multiscale PDEs typically solved in physics and engineering simulations. 

Proposal
Physical system and training data

Introduction

Conclusion

Schematic for a two-level multigrid algorithm. Figure adapted from Chen et al. (2001).
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• Improving heuristic operators within existing formally derived numerical methods 
can allow for computational gains, easier implementation, and more rapid 
deployment in codes.

• Multigrid (MG) methods are attractive due to their ability to efficiently reduce errors 
at multiple scales. 

• The prolongation (interpolation) operator lends itself to a data-driven treatment, as is 
it similar to super-resolution operators in image analysis.

Multigrid parameters: 
Nsmooth,pre: smoothing iterations before solving
Nsmooth: smoothing iterations between MG steps.
Nstep: Restriction/interpolation of grid size by 2^(2Nstep) factor
Rmin: Side length of coarse grid.

GAN prolongation structure and implementation 

• We produce a set of 200 pairs of  pressure and source term grids by directly 
solving the NS equations.

• We select 1000 training grids with random restrictions of the data
• We transform the log of the grid values to the range [-1,1] using the global min 

and max of all the  pressure grids.

1) Find the max and min data of the grid, and normalize the data to [-1,1], using a 
symmetric log function.
2) Divide the normalized coarse gird into overlapping windows (ns

2 kernel, with stride = 2)
3) Apply GAN prolongation operator to produce a set of nL

2 window kernels.
4) Construct the fine grid by assigning the central (ns+2)2 window to the fine grid. Any non-
overlapping areas are assigned to the appropriate value.

Schematic for a super-resolution GAN (see Ledig+2017)

Example of the first 15 iterations of the MG method solving for the pressure.
Top: Interpolation with traditional spline interpolation, Bottom: GAN interpolation 

Top: GAN operator applied every iteration.                Bottom: GAN and spline operators alternated every iteration.

Left: Norm of difference between iterations            Right: Ratio between spline and GAN results.

Convergence in p spectral 
density with increasing MG 

iterations

• In this proof-of-concept, the MG method with GAN interpolation on average 
converged just as fast as with standard interpolation.

• For some grids, the GAN interpolation converged faster than the spline version, but 
for others, it converged slower.

• With the spline-based interpolation, the MG is unable to capture high to mid-
frequency information at early times, while the GAN-based version contains higher 
frequency information at earlier times. 

Equations
Physical system and training data

• We focus on the pressure-Poisson formulation of the incompressible Navier-Stokes 
(NS) equations.

• Using a two-level multigrid method, we solve a Poisson equation for pressure p and 
a source term f(x,y), which is a function of the fluid velocity u and viscosity !.

r2p = r · (⌫r2u� (u ·r)u) = f(x, y)
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Discussion

• Both examples of spline vs. GAN-based MG show progression to the same solution.
• Visually, the GAN-based MG solver contains higher frequency information at earlier 

iterations compared to to the spline-based MG.

Averaged results of MG solving 100 different grids. 

Spline

GAN


