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Background & Motivation

• Understanding how humans navigate in modern day cities is critical for urban 
planning and location-based services e.g., traffic congestion, disaster 
management, network support, and epidemic modeling.

• However, it is difficult to gain access to large-scale city-wise mobility trajectory 
data of high quality in practice due to privacy concerns and limited availability.

• To better understand human mobility behaviors, learning to simulate realistic 
mobile trajectories has become a major subject of many recent research efforts.

Problem Definition & Objective

Objective: 
We focus on building a comprehensive understanding of generative models for 
human mobility synthetization. 
1. Distribution Similarity: Can the proposed continuous time-conditioned location 

generator produce more realistic sequences in both spatial and temporal 
aspects?

2. Application Utility: Are the underlying dynamics in human mobility data 
sufficiently captured by our model and reflected in downstream tasks when 
compared to real-world data?
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Continuous-Time Generation:
• We view a mobility trajectory as a spatial-temporal point process with each event 

denoting a person entering a new location. Instead of binning timestamps into 
large discretized time slots, trajectories are viewed as sequences of events 
happening at irregular intervals,

• We leverage the off-the-shelf implementation of WGAN-GP with a recurrent 
generator 𝐺𝑇	and an MLP discriminator 𝐷𝑇 . 𝐺𝑇 takes a sequence of random 
variables 𝑧	 = 	 𝑧1, . . . , 𝑧𝑁	 		𝑧𝑖	 ∼ 𝒩(0, 𝐼)	and sequentially generates the sequence 
of duration [𝜏1, . . . , 𝜏𝑁	]	using a bidirectional LSTM. 

Conditional Spatial Generation:
• We train 𝐺𝐿 parameterized by 𝜃 via policy gradient with the gradient of the 

expected end reward 𝑅𝑁 where the expected cumulative reward 𝑄𝐷𝐿 is the 
estimated probability of being real or fake by the discriminator.
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Problem:
• Human mobility data contains spatial-temporal trajectories 𝑆	 = 	 𝑥1, 𝑥2, … , 𝑥𝑁

where each 𝑥𝑖 is a tuple 𝑡𝑖, 𝑙𝑖 representing a visiting record.
• For each record, 𝑡𝑖	[0 ≤ 𝑡𝑖 < 24]	denotes the 𝑖𝑡ℎ time-stamp and 𝑙𝑖 denotes the 

location 𝑙𝑎𝑡, 𝑙𝑜𝑛 of the record.
• It is often intractable to model the joint distribution ℙ(𝑆) especially for long 

sequences with large 𝑁, we made the common assumptions to factorize the joint 
probability ,ℙ(𝑆) 	= ℙ(𝑥1)∏ ℙ(𝑥𝑡|𝑥I:KLI)M

KNO , treating the modelling approach as a 
sequential process. 

• Following recent work (Feng et al., 2020), we discretize GPS coordinates into an 
𝑀×𝑀 grid 𝐿 containing up to 3 digits after the decimal point of coordinates. We 
do not discretize time.

Evaluations

Dataset: 
• We utilize the GPS trajectory dataset collected by MSRA Geolife project from 

182 users in a period of over five years (Zheng et al., 2010). 
• We keep the trajectories within the 5-th Ring Road of Beijing (50,652 grids 

covering 39.85 N ∼ 40.00 N, 116.25 E ∼ 116.50 E).
• There are 11,375 trajectories with 31.531 records on average, and the average 

daily traveling duration and distance are 1.945 hours and 9.028 km.

Evaluation Metrics:
We adopt the following individual trajectory and geographical metrics (Ouyang et 
al., 2018; Feng et al., 2020) to evaluate the distribution similarity (Jensen-Shannon 
divergence) between real and generated mobility data: 
1) Distance: the daily cumulative travel distance per trajectory; 
2) Radius: the radius of gyration for a daily trajectory; 
3) Duration: the total stay duration of each visited location; 
4) DailyLoc: the number of unique locations in the daily trajectory; 
5) P(r): the visiting probability of one location r; 
6) P(r,t): the visiting probability of one location r at time t.

COVID-19 Spreading Simulation:
• We run simulations with human mobility data, and calculate (mean) absolute 

percentage error between real and generated data on the number of different 
populations (Susceptible, Infected, Recovered).

Results 


