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« Understanding how humans navigate in modern day cities is critical for urban Continuous-Time Generation: Table 1: Distribution comparison between real and generated mobility data. For all the metrics,
planning and location-based services e.g., traffic congestion, disaster . We view a mobility trajectory as a spatial-temporal point process with each event lower values indicate more realistic trajectories. We marked the best result with boldface.
management, network support, and epidemic modeling. denoting a person entering a new location. Instead of binning timestamps into — : : , :

o _ _ _ - _ | di tized i lots. traiectori re Vi d n f nt Individual Trajectory Metrics Geographical Metrics

« However, it is difficult to gain access to large-scale city-wise mobility trajectory arge discretized ime slots, trajectories are viewed as sequences of events Model D Redivs Duration  DailvLo B P

s e ) ) o o happening at irregular intervals odels istance adius uration ailyLoc (r) (r,t)
data of high quality in practice due to privacy concerns and limited availability. PP ) ;
« We leverage the off-the-shelf implementation of WGAN-GP with a recurrent Markov Fist-order MC o011 Q.I000% 908858 037574 0032l o8l

« To better understand human mobility behaviors, learning to simulate realistic 9 o Imp HMM 045217 052043 0.10166  0.39246 038329  0.82717

. . . . . generator G, and an MLP discriminator D, . G, takes a sequence of random I0-HMM 0.30730 0.15118  0.72849  0.66639 0.60712  0.82690
mobile trajectories has become a major subject of many recent research efforts. . .
variables z = |z,,...,zy ] z;, ~ NV (0,]) and sequentially generates the sequence Deep GRUPred 0.11441 0.17767 0.25546  0.55544 0.48476  0.82401
of duration [t,,..., Ty ] using a bidirectional LSTM. Prediction = TransDecoder 0.09735 0.16273  0.28388  0.56912 0.51261  0.82423
Conditi | Spatial G ti Models TransAutoencoder 0.16209 0.22480  0.22952  0.54911 0.47934  0.82441
onditional Spatial Generation:
. P _ . _ _ _ _ GRU-VAE 0.82830 0.57407  0.15602  0.71901 0.58838  0.82190
« We train G, parameterized by 0 via policy gradient with the gradient of the Deep TransVAE 0.83198 0.67098  0.20954  0.62373 0.51397  0.82079
expected end reward R, where the expected cumulative reward QP* is the Generative ~ LTAJGAN 0.82075 0.72006  0.16102  0.42136 0.47586  0.79298
timated probability of being real or fake by the discriminator Models ARAE 067068~ 0.57447  0.00204 044594 0-50957 0.82129
esli P y g y : SeqGAN 0.11074 0.16360 027096 0.57523  0.57125 0.82806

DeltaGAN (Ours)  0.10553 0.06677  0.00561  0.35276 0.30523 0.80262
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Figure 1: The proposed DeltaGAN includes a continuous-time generator G and a time-conditional
location generator G5, with Gaussian noise z, together with their discriminators D7 and Dy,.

COVID-19 Spreading Simulation:

« We run simulations with human mobility data, and calculate (mean) absolute
@ @ @ @ < percentage error between real and generated data on the number of different
v v v N yGen: GT Packing samples ~ [Dis: D populations (Susceptible, Infected, Recovered).
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Figure 2: (a) Geographical visualization of 10, 000 real and generated trajectories. We set the first
95% percentile of visit times as the colormap range for clarity. (b) Utility of generated mobility data
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* Human mobility data contains spatial-temporal trajectories S = [x, x,, ..., x] > e ; i
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