
An Extensible Benchmark Suite for Learning to Simulate Physical Systems

Karl Otness, Arvi Gjoka, Joan Bruna, Daniele Panozzo, Benjamin Peherstorfer, Teseo Schneider & Denis Zorin

ICLR 2021 Workshop

Deep Learning for Simulation (simDL)

Contributions

1. A set of simple, yet representative, physical models with a range of training and 

evaluation boundary conditions, coefficients, and parameters with reference 

high-accuracy solutions which are used to evaluate data-driven methods

2. Reference implementations of traditional time integration algorithms, which are 

used as baselines for evaluation

3. Implementations of widely used data-driven methods, including physics-

agnostic multi-layer perceptrons (MLPs), efficient kernel machines, and 

geometric deep learning models based on graph neural networks

Our benchmark suite is also modular, permitting extensions with limited code 

changes.

Introduction

Time integration of models of physical systems is a core task of scientific 

computing. Recently, there has been a surge of interest in data-driven methods that 

learn from data a model of the physical system and then integrate it in time to make 

predictions. This work introduces benchmarks for evaluating data-driven methods 

on a variety of physical systems and proposes evaluation scenarios. The proposed 

benchmarks comprise three representative physical systems (spring, spring mesh, 

wave) and a collection of classical time integrators as baselines. For demonstration 

purposes, we apply several data-driven methods to the benchmarks and report 

accuracy and computational efficiency.

Numerical Experiments

Given 𝑀 initial conditions 𝑥0
(1)
, … , 𝑥0

(𝑀)
and the corresponding 𝑀 trajectories 𝑋(𝑖) =

[𝑥0
𝑖
, … , 𝑥𝐾

(𝑖)
] obtained with a time integration scheme from the dynamical systems, 

we consider the problem of learning and approximation ሚ𝑓 of the right-hand side 

function 𝑓. This gives an approximate ሶ𝑥 that is then numerically integrated to 

produce a trajectory ෨𝑋 for an initial condition 𝑥0. The aim is that ෨𝑋 approximates 

well the true trajectory 𝑋 obtained with 𝑓 for the same initial conditions.

We evaluate the learned models on their ability to predict derivatives producing 

good approximate trajectories from randomly sampled initial conditions. During 

evaluation, we use initial conditions drawn independently from those used to 

produce training data, both from the same distribution as the training samples, as 

well as from a distribution with support outside the training range.

We consider a variety of common machine learning methods:

1. A k-nearest neighbors (KNN) regressor which memorizes input-output pairs 

from the training set

2. A neural network kernel

3. Two simple MLP architectures

4. A graph neural network derived from Pfaff et al. (2020)

This last network predicts accelerations for each system and integrates these to 

produce predictions for the velocity. The graph structure is selected to match a 

static mesh chosen for each of our systems.

We consider the performance of each of these methods on our three benchmark 

systems. For each system, we select a time step size at which numerical integration 

succeeds with acceptable error. We measure the accuracy of trajectories ෨𝑋
computed from the approximated right-hand side functions when combined with 

several integration schemes, as well as the computational overheads for each 

scheme. The plot and table in the center of the middle column illustrate the results 

of our measurements.

Our results show that the learning methods successfully approximate these 

systems even without access to the underlying model. Potential improvements 

could address accuracy, data requirements, and computational overhead. In most 

cases, the kernel method—though one of the simplest models—performs well. The 

graph network also demonstrates impressive stability, even producing good results 

outside the distribution of training samples. This may be due to the encoding of the 

true mesh structure directly into the network architecture, demonstrating the 

potential of such techniques.

Systems

Consider a time-dependent PDE of the form 𝜕𝑡𝑢 = ℒ(𝑢), where 𝑢 is the solution 

function and ℒ is a potentially nonlinear operator that includes spatial derivatives of 

𝑢. Discretizing in space one obtains a dynamical system with an 𝑁-dimensional 

state 𝑥 𝑡 ∈ ℝ𝑁 for times 𝑡 ∈ 0, 𝑇 and initial conditions 𝑥0 ∈ ℝ𝑁. For second-order 

systems we consider their formulation as a first-order system via position 𝑞 and 

velocity 𝑝, ሶ𝑥 𝑡 = ሶ𝑞 𝑡 , ሶ𝑝 𝑡 = 𝑓(𝑥 𝑡 ). 

We test our numerical integrators and learning methods on three sample systems:

1. Spring: a single spring in one dimension

2. Spring mesh: a two-dimensional grid of masses linked by springs

3. Wave: a wave equation with 125 spatial grid points

For each of these systems we define a distribution over initial conditions for [𝑞, 𝑝]. 
We sample from these distributions to select initial configurations of these systems, 

then integrate with a numerical integrator to produce high-accuracy, reference 

solutions. Sample initial conditions, as well as the distributions for training samples, 

are illustrated at the top of the middle column.

When evaluating these systems with standard numerical integrators, we apply:

1. Forward Euler

2. Leapfrog

3. Runge-Kutta 4

4. Backward Euler

Conclusion

A standardized set of problems is valuable to provide consistent accuracy and 

performance measurements as more learning methods for data-driven time 

integration emerge. The focus of our benchmarks is on simplicity and the setting 

where training samples are available but access to the underlying model is not. In 

the future, we hope to extend this benchmark suite to include additional systems 

with different physical behavior and to cover a wider range of data-driven tasks in 

scientific computing.

Error distribution for all systems. MSE is averaged across all evaluation snapshots for three 

independently trained neural networks on training sets of several sizes, as well as an evaluation on 

samples taken outside the distribution of training data.

Computational slowdowns for equivalent error for each learned method. For each base integrator, 

we match the error rates for the learned method by increasing time step sizes. Each cell reports the 

slowdown factor and (after the slash) the time step scaling necessary.

Parameters used to generate data sets for training and evaluation. Evaluation sets and 

training sets of three sizes are generated using the specified number of trajectories, each of 

which is integrated with the time step sizes and number of steps listed.

ሶ𝑞 𝑡 , ሶ𝑝 𝑡 = [𝑝 𝑡 ,−𝑞 𝑡 ] ሶ𝑞(𝑡)
ሶ𝑝(𝑡)

=
0 𝐼

𝑐2𝐷𝑥𝑥 0
𝑞(𝑡)
𝑝(𝑡)

Representative initial conditions for the three systems. Shaded blue regions denote the sampling 

range for initial states.


