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Figure 5: Flow simulation results for the regularized model. (a) Pressure field (including the additional inlet volume) and (b) Flow
streamlines. The image translation models enable visualization of flow through the volume and calculation of apparent permeability
from nondestructive image data.

Figure 1: Image-based characterization workflow

Multimodal Image Dataset

e Vaca Muerta shale sample (600 um diameter core) is initially imaged with micro-computed tomography,
then a subregion (30 um diameter plug) is selected for advanced imaging

Conclusions

e Jacobian regularization term improves volume prediction when only 2D training data is available
e Dual modality dataset comprised of 149 aligned/paired 2D images from nano-computed tomography

(nano-CT) and focused ion beam-scanning electron microscopy (FIB-SEM), with 33.6 x 33.6 nm pixel size o Thresholding-based segmentation of translated images creates suitable simulation domain

e Image translation models allow for visualization of flow with non-destructive image data; simulation results
show greater apparent permeability than expected, likely due to assumptions made during segmentation

Future Work

e Further improve £ — z and y — z slice continuity, potentially by using a second generator network
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~ imaged sample

e Predict pressure fields directly from non-destructive image data

e Use flow simulation as a prior to improve the image volume prediction
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FIB-SEM image slice, (d) Example of paired nano-CT/SEM-FIB image slice overlay. x — 1y image slices are independently passed through 2D-to-2D network and stacked to create image volumes.



