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Problem

How do we design deep learning models to forecast 3D turbulent flow when the flow is non-stationary
and has variable density?

Our Contributions

• Taylor-Net: first deep learning method to predict 3D, variable-density, and non-stationary turbu-
lent flows, by combining Taylor series approximation and U-net.

• Significant improvement in accuracy and physical consistency over competitive baselines on more
general (e.g. non-stationary and anisotropic VD turbulence) fluid dynamics,

• Theoretical analysis of the interplay between forecasting horizon, step size, and the order of Taylor
approximation.

Background

Limitation of State of the Art Current methods still rely on simplifying the assumptions in Navier-
Stokes equations to make the problem more tractable, such as working on two-dimensional data, studying
stationary flows, using low-resolution data, or asserting uniform density. These assumptions dramatically
limit their applicability to real-world turbulent flows.

Variable Density Turbulence VD turbulence emerges from the mixing of two fluids with different
densities. Using the Einstein summation convention, the governing equations of this physical system are:
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where ρ is the whole density field, ui is the whole velocity field in direction i, p is the pressure, gi is the
gravity in direction i and the stress tensor is assumed Newtonian,
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The non-dimensional parameters are the computational Reynolds number, Re0, Schmidt number, Sc, and
Froude number, Fr, defined in [1].

Taylor-Net: Learning Taylor Series Remainder with Deep Nets

We employ a hybrid method which combines Taylor approximation and a U-net to learn the Taylor re-
mainder. Note that our method does not explicitly use any part of the Navier-Stokes equations.

Taylor Approximation Given input data x−t, . . . , x0, we can interpolate the n-th order polynomial fit
to the data where n ≤ t. Let pn(t) = a0 + a1t+ . . . ant

n. The coefficients of pn can be determined by the
inverse of the Vandermonde matrix(
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Then the n-th order Taylor approximation is

x̂1 = Tn(x−n, . . . , x0) = pn(1) =
0∑

i=−n
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)
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For n = 2, this yields x−2 − 3x−1 + 3x0 and for n = 1 this gives −x−1 + 2x0.

Periodic Convolution Since the input and output spatial domain is periodic, we implement the layers
of the U-net using periodic 3D convolutions. Consider input tensor x of size 643 and kernel φ of size
(2c + 1)3. We index the kernel symmetrically about (0, 0, 0). We define periodic convolution as

ym,n,p =
c,c,c∑

i=−c,j=−c,k=−c

φi,j,kxm−i,n−j,p−k

where we interpret the indices ī of x modulo 64 . This is implemented using the “circular” padding mode
of the PyTorch conv3D function.
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Figure: Diagram of the Taylor-Net-n method. First, the model computes the nth-order polynomial fit, i.e., Taylor
approximation, which it uses to approximate x̃t+1 = T (x1:t) . The U-net predicts the Taylor remainder xt+1 = Rθ(x1:t). For
the output we take the sum (ρt+1,pt+1) = xt+1 = xt+1 + x̃t+1 from which we compute the velocity vt+1 = pt+1/ρt+1.

Theoretical Analysis on Taylor Order Although higher order Taylor approximations achieve better
fit over the short-term, they also diverge faster in the long term, a fact we see reflected in our experiments.
Thus the optimal order of n represents a trade-off.

Proposition 1

Assume the true time series satisfy |xt| ≤ C for all t. For almost all values x−n, . . . , x0, the iterated
n-th order Taylor progression xi+1 = Tn(xi−n, . . . , xi) diverges and the rate of divergence is Θ(in).

Experiments

Experiment Setup We generate two datasets using HVDT Direct Numerical Simulation (DNS) in a
triply periodic domain [(2π)3] with a 643 resolution. Our turbulent datasets contain flows with two different
Atwood numbers.
We benchmark the performance of different methods w.r.t three metrics: Root Mean Square Error (RMSE),
Energy Spectrum Error (ESE) and Mass Conservation. We compare with SoTA baselines for turbulent
flow prediction including U-Net, TF-Net [3], and Fourier Neural Operator (FNO) [2].

Prediction Performance

Figure: Performance comparison of our model versus several baselines across 3 metrics for p prediction: (a) RMSE (b)
Mass-Conservation and (c) energy spectrum at the 20th prediction step. Our errors grow more slowly than others across the
forecasting horizon. The flow predicted by our model has an energy spectrum closer to the truth.

Table: Parameter count and run time comparison of different models. Previous state-of-arts deep learning models consistently
fail to outperform simple numerical approximations. Our combined numerical and deep learning method has the best
performance and shows a great improvement in comparison with numerical approximations.

Models DNS Unet TF-Net FNO TaylorNet
# params (1e7) — 1.587 2.528 0.083 1.587
Runtime (s) ≈ 100 0.0407 0.0986 0.0478 0.0404

Experiments

Prediction Visualization

Figure: Prediction visualization for momentum field over 30 time steps. For each frame, we pick only the momentum field
along x-axis and cast 3 surfaces of the data cube to xy, yz, zx planes. Comparison between Taylor-Net1 and ground truth
shows our hybrid method can capture the small scale dynamics.

Ablation Study

Trade-off between Interval and Precision To understand why Taylor approximation improved the
performance so significantly, we varied the input step size and found that higher order Taylor approximations
are primarily helpful when the step size in numerical differentiation between inputs is small. As the step
size between inputs increases, the additional benefit of higher order Taylor approximation decreases.

U-net Taylor 1 Taylor-Net1 Taylor 2 Taylor-Net2
RMSE ∆t = 1 step 0.2713 0.03732 0.03036 0.01752 0.01548
RMSE ∆t = 2 step 0.07167 0.04146 0.02603 0.02176 0.01691
RMSE ∆t = 4 step 0.05096 0.06918 0.0232 0.03305 0.02656

Table: Interval vs Precision. Taylor n is nth order Taylor approximation.
Zero Padding We perform an ablative study with periodic padding. Instead of periodic padding, we use
zero padding. We find that the mass conservation is much worse.

Figure: Comparison of our model with zero padding versus several baselines across 3 metrics for p prediction: RMSE, Mass
Conservation, and Energy Spectrum.
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