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Problem Statement & Main Contributions

Background:

• Granular flows ubiquitous in nature and many industrial processes

• No underlying governing equations for general granular flow exist!

• Simulations with the Discrete Element Method (DEM; Cundall et al., 1979):

Granular flow simulation data with open-source DEM software LIGGGHTS (Kloss et al., 2012)

• LIGGGHTS allows simulation of particulate flows:

– wide range of materials
– complex mesh-based wall geometries

⇒ enables simulation of relevant industrial processes

• Interest in machine learning models, that can predict simulation trajectories

⇒ Gaining speedup by machine learning models

Compared to previous work (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2020):

Focus on learning 3D granular particle flow simulations with nontrivial geometric boundary conditions

Main contributions:

• Triangular geometric boundaries for Graph Neural Networks (GNNs)

• Orientation independence of normal vectors

• Compare and analyse simulated processes

Time Transition Model: tk −→ tk+1

suggested by

Sanchez-Gonzalez et al. (2020)

ṗtk+1 = ṗtk + ∆t p̈tk+1

ptk+1 = ptk + ∆t ṗtk+1

• based on GNNs with an

encoder-processor-decoder architecture

– encoder: construct neighbourhood graph,

retrieve node and edge embeddings

– processor:

message passing neural network

– decoder: extraction of acceleration

• p: particle location

• ṗ: particle velocity

• p̈: particle acceleration

(to be predicted)

• ∆t = 1 (fixed)

• usage of

relative encoder version:

– take only relative positional

information into account

Triangular Geometric Boundaries
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• geometry described by triangular mesh

• static boundary particles ⇒ large num-

ber of additional particles

• insert virtual particles as needed into

graph

– needs distances from particles to

triangles

– usage of algorithms as adopted

from Eberly (1999) (see figure)

Orientation Independence

Particle - Wall Interactions:

• Normal vector components as features to describe walls

• Vector representation is orientation dependent,

while particle - wall interactions do not dependent on

this representation!

Just using both orientations has problem that an order still is there.

⇒ Define partial ordering:

fo(n) =

3∑
i=1

3i−1 (sgn (ni) + 1)

o1 =fo(n)

o2 =fo(−n)

⇓

repr(n) =

{
n,−n if o1 6 o2
−n,n otherwise
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Figure 3: Particle distributions for Hopper and Drum dynamics. Data obtained by the particle simu-
lator LIGGGHTS (Ground Truth) and our trained graph neural network (Prediction) are compared.
Particles are indicated by green spheres, triangular wall areas are yellow, the edges of these triangles
are indicated by grey lines. The circular arrow indicates the rotation direction of the Drum.
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Figure 4: Position (upper left) and flow profile (lower left) plots for the Hopper, and, flow profile
(upper right) and entropy plot (lower right) for the Drum. The plots visualize ground truth (solid
line) vs. predictions (dashed line) in dependence of the time step or a coordinate. The flow profiles
are average velocities of of particles at a given time step or z coordinate. The mixing entropies are
obtained by splitting particles into two partitions according to a threshold on the respective x or z
coordinate at time step 30.
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Mixing Entropy

• proposed by Lai et al. (1975)

• quantify extend of particle mixing

• local entropy s(xklm, t) at grid cell xklm

• splitting particles into two classes +1, -1 at a

certain time step t0

n(xklm, t) = n+1(xklm, t) + n−1(xklm, t)

f±1(xklm, t) =
n±1(xklm, t)

n(xklm, t)

s(xklm, t) = − f+1(xklm, t) log f+1(xklm, t)

− f−1(xklm, t) log f−1(xklm, t)

S(t) =
1∑

k,l,m

n(xklm, t)

∑
k,l,m

n(xklm, t)s(xklm, t)

Analysis of ML Simulation Outputs
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Figure 3: Particle distributions for Hopper and Drum dynamics. Data obtained by the particle simu-
lator LIGGGHTS (Ground Truth) and our trained graph neural network (Prediction) are compared.
Particles are indicated by green spheres, triangular wall areas are yellow, the edges of these triangles
are indicated by grey lines. The circular arrow indicates the rotation direction of the Drum.
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Figure 4: Position (upper left) and flow profile (lower left) plots for the Hopper, and, flow profile
(upper right) and entropy plot (lower right) for the Drum. The plots visualize ground truth (solid
line) vs. predictions (dashed line) in dependence of the time step or a coordinate. The flow profiles
are average velocities of of particles at a given time step or z coordinate. The mixing entropies are
obtained by splitting particles into two partitions according to a threshold on the respective x or z
coordinate at time step 30.
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