LEARNING 3D GRANULAR FLOW SIMULATIONS

¹ ELLIS Unit Linz, LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz, Austria 2 DCS Computing GmbH, Linz, Austria ³ Institute of Advanced Research in Artificial Intelligence (IARAI) ⁴ University of Amsterdam, Amsterdam, Netherlands

Problem Statement & Main Contributions

Background

- Granular flows ubiquitous in nature and many industrial processes
- **No underlying governing equations** for general granular flow exist!
- Simulations with the **Discrete Element Method** (DEM; Cundall et al., 1979): Granular flow simulation data with open-source DEM software LIGGGHTS (Kloss et al., 2012)
- LIGGGHTS allows simulation of particulate flows:
 - wide range of materials
 - complex mesh-based wall geometries
- \Rightarrow enables simulation of relevant industrial processes
- Interest in machine learning models, that can predict simulation trajectories \Rightarrow Gaining speedup by machine learning models

Compared to previous work (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2020): Focus on learning 3D granular particle flow simulations with nontrivial geometric boundary conditions

Main contributions:

- Triangular geometric boundaries for Graph Neural Networks (GNNs)
- Orientation independence of normal vectors
- Compare and analyse simulated processes

Time Transition Model: $t_k \rightarrow t_{k+1}$

suggested by Sanchez-Gonzalez et al. (2020)

- based on GNNs with an encoder-processor-decoder architecture
- **encoder**: construct neighbourhood graph, retrieve node and edge embeddings processor:
- message passing neural network
- **decoder**: extraction of acceleration

$\dot{\boldsymbol{p}}^{t_{k+1}} = \dot{\boldsymbol{p}}^{t_k} + \Delta t \ \ddot{\boldsymbol{p}}^{t_{k+1}}$ $\boldsymbol{p}^{t_{k+1}} = \boldsymbol{p}^{t_k} + \Delta t \ \dot{\boldsymbol{p}}^{t_{k+1}}$

- p: particle location
- $\dot{\boldsymbol{p}}$: particle velocity
- \ddot{p} : particle acceleration

(to be predicted)

- usage of
- information into account

Triangular Geometric Boundaries

- $\boldsymbol{T}(u,v) = \boldsymbol{B} + u \; \boldsymbol{E}_0 + v \; \boldsymbol{E}_1$
- geometry described by triangular mesh
- static boundary particles \Rightarrow large number of additional particles
- insert virtual particles as needed into graph
 - needs distances from particles to triangles
 - usage of algorithms as adopted from Eberly (1999) (see figure)

• $\Delta t = 1$ (fixed)

- relative encoder version:
- take only relative positional

Andreas Mayr¹ Sebastian Lehner¹ Arno Mayrhofer² Christoph Kloss² Sepp Hochreiter^{1,3} Johannes Brandstetter^{1,4}

Orientation Independence

Particle - Wall Interactions:

- Normal vector components as features to describe walls
- Vector representation is orientation dependent, while particle - wall interactions do not dependent on this representation!

Just using both orientations has problem that an order still is there.

 \Rightarrow Define partial ordering:

$$f_o(\boldsymbol{n}) = \sum_{i=1}^3 3^{i-1} (\operatorname{sgn} (n_i) + 1)$$
$$o_1 = f_o(\boldsymbol{n})$$
$$o_2 = f_o(-\boldsymbol{n})$$
$$\downarrow$$
$$repr(\boldsymbol{n}) = \begin{cases} \boldsymbol{n}, -\boldsymbol{n} & \text{if } o_1 \leq o_2 \\ -\boldsymbol{n}, \boldsymbol{n} & \text{otherwise} \end{cases}$$

Application to Granular Flow Data

— 0.013

 $\overline{}$ \succ

Mixing Entropy

- proposed by Lai et al. (1975)
- quantify extend of particle mixing
- local entropy $s(\boldsymbol{x}_{klm}, t)$ at grid cell \boldsymbol{x}_{klm}
- splitting particles into two classes +1, -1 at a certain time step t_0
- $n(\boldsymbol{x}_{klm}, t) = n_{+1}(\boldsymbol{x}_{klm}, t) + n_{-1}(\boldsymbol{x}_{klm}, t)$ $f_{\pm 1}(m{x}_{klm},t) = rac{n_{\pm 1}(m{x}_{klm},t)}{n(m{x}_{klm},t)}$ $s(\boldsymbol{x}_{klm},t) = -f_{+1}(\boldsymbol{x}_{klm},t)\log f_{+1}(\boldsymbol{x}_{klm},t)$ $-f_{-1}(oldsymbol{x}_{klm},t)\log f_{-1}(oldsymbol{x}_{klm},t)$ $S(t) = \frac{1}{\sum n(\boldsymbol{x}_{klm}, t)} \sum_{k \ l \ m} n(\boldsymbol{x}_{klm}, t) s(\boldsymbol{x}_{klm}, t)$

Analysis of ML Simulation Outputs

References

Cundall P. et al. (1979). A discrete numerical model for granular assemblies.

Eberly D. (1999). Distance between point and triangle in 3D.

Kloss C. et al. (2012). Models, algorithms and validation for opensource DEM and CFD-DEM.

Lai F. et al. (1975). Application of a Discrete Mixing Model to the Study of Mixing of Multicomponent Solid Particles.

Pfaff T. et al. (2020). Learning Mesh-Based Simulation with Graph Networks.

Sanchez-Gonzalez A. et al. (2020). Learning to Simulate Complex Physics with Graph Networks.