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Abstract

In contrast to the current Large Hadron Collider (LHC) design, the
High-Luminocity (HL-LHC) project aims to increase the luminosity by a
factor of 10. The latter means a larger number of collision events and
higher amount of information to analyze - which will consequently re-
quire more computational power. Current particle collision simulations
rely on Monte Carlo simulations that are accurate but time consuming
and computationally expensive. Thus, there is an increased demand
for accurate and fast simulation that do not sacrifice the physics accu-
racy. Machine Learning offers a potentially faster solution that main-
tains a high level of fidelity. In this work, we explore the power of a
graph generative models for effective reconstruction of LHC events,
paving the way for full detector-level fast simulation for HL-LHC.

Data Pre-processing

• We utilize samples of top quark pairs available at the CERN Open
Data Portal [2].The dataset contains 30,000 samples simulated us-
ing the Pythia 6 generator with 3 channels corresponding to Elec-
tromagnetic Calorimeter (ECAL) hits, Hadronic Calorimeter (HCAL)
hits and Tracks projected on the ECAL surface.

• Non-zero hits represent the location in the detector particle hits are
reconstructed. Each layer of the detector "records" the correspond-
ing information about the particle.

• We represent non-zero particle hits as nodes within a graph. Node
features include the hits’ x and y locations in addition to their
energies, while the edge information stored in adjacent matrices
represent the connections between the modes.

• To complete the graph topology, each node is connected to k-
nearest neighbours around it closest in terms of Euclidean distance
given by

√
(x− xi)2 + (y − yi)2 with xi and yi referring to this node’s

coordinates.

• Each sample has the shape Nx3 where N is the number of non-zero
hits within the detector.

Figure 1. Graph representation of the collision data.

Model

• A graph with N nodes is denoted by G = (V,E,A) where
V are the vertices, E are the edges, and A is an N x N adjacency matrix.

• Node features are given by X ∈ RN×D with D being the number of features per
node.

• A hidden Graph Convolutional Network (GCN) is given by H i = f (H i−1, A),
where H i = N × X i are the node features at iteration i and f is a propagation
function that defines the output based on the input.

• We use GraphSAGE [3] in a graph variational encoder-decoder model learning to
reconstruct graphs from a learned compressed representation in latent space that
is obtained with spectral clustering of the graph’s nodes with similar latent features.

• The graph is compressed using the MinCut pooling technique inspired by [1].

• The decoder upsamples the feature and adjacency matrices as follows:

Xrec = SXPooled;Arec = SAPooledST

where S is a learned cluster assignment matrix similar to the one defined in [1].
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Figure 2. Graph VAE model architecture
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Figure 3. True detector hits (top) vs Graph VAE reconstructed hits (bottom)

Comparison

Figure 4. Runtime comparison between Graph VAE and Monte Carlo
simulations

Horovod Weak Scaling on p GPUs with p={1,2,3,4} for 100 iterations on NVIDIA DGX V100  
 GPU Processes execution time (in seconds) for 3200 samples 

One Two Three Four 

Mean Execution  
Time (s) 

69.34 85.48 94.96 101.54 

Stddev Execution  
Time (s) 

3.05 1.85 2.26 1.00 

Speedup 1.00 1.62 2.19 2.73 

Parallelization  
efficiency 

1.00 0.81 0.71 0.68 

 

 

 

 

 

 

 

 

 

Table 1. Scaling Results with Horovod on NVIDIA DGX V100

Remarks

• This work is an open-source project, and has a potential to impact many
researchers who rely on particle physics simulations.

• The computational efficiency provided by the generative model pre-
sented in this work allows to overcome computational constraints.
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