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We motivate and test this proposal with a large-scale i |
summarization problem for cosmological simulations: :
predicting global properties of the universe via a set of
observed structures distributed throughout space. Soft histogram
» The use of a DeepSet increases accuracy of traditional ecdes
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forecasting techniques from 2_0/_0 to 13% tor our dataset Figure 2: Schematic of a histogram pooling operator being used in a DeepSet, compared to a typical sum pool.
« Histogram pooling achieves similar performance to sum- and
mean-pool operations
 However, the histogram pool allows us to symbolically discover Model Results
an optimal cosmological feature for cosmic voids, which is A simple functional form for a DeepSet is: Our best model yields the following interpretable equation for g:
possible due to the strong connection with traditional pooling
operators Yy = f( p({g(wz)}) ) zi1 = —aR; + Poc; — YRe; + C,
Cosmic Voids Dataset for a set of ve.ctors {x}_,.\» PErMutation-invariant pooling operator o, o = 0. 177 B — 0577 v = 0026, and C = 0.16
We use 2000 simulations from the Quijote simulation suite, learned functions fand g, and output vector y. o N
_ _ _ where R, [1, and ¢ represent the void radius, depth, and ellipticity.
each with ~5000 voids (Villaescusa-Navarro et al., 2020). Our model achieves ~13% error on predictions for 2 _, improving over
. Each void has features, such as radius, ellipticity, and depth Typical pooling operations include summation, averaging, or max. Our | O 0 P e p. | g |
oroposed histogram pooling operation takes the form: classic results of 20%, and allows us to have explicit analytic interpretations.
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where Z is the j-th latent feature of element /, a, is a hyperparameter g O
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R=10, ellipticity=0.0, ... ,_ giving a pre-defined bin position for bin k, o is a hyperparameter 8 0.3 - R3S 2 C e
| controlling the histogram’s smoothness, W, is the histogram value for E E E :=;=_:_§= E
feature j and bin k, and w is a matrix with its j-th row and k-th column 0.2 0.02 2 p——— T
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Figure 1: Field in the Quijote Simulations (Villaescusa-Navarro et al.,
2020) with a few voids circled and labeled. True Qp, 0.00



