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Figure 2: Schematic of a histogram pooling operator being used in a DeepSet, compared to a typical sum pool.

Figure 1: Field in the Quijote Simulations (Villaescusa-Navarro et al., 
2020) with a few voids circled and labeled.
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We demonstrate a differentiable histogram as a pooling operator 
in a DeepSet. 
• For some set summarization problems, this results in 

much more interpretable latent features than standard 
approaches, due to functional resemblance with manual 
set summarization

• Allows us to extract explicit symbolic interpretations

We motivate and test this proposal with a large-scale 
summarization problem for cosmological simulations: 
predicting global properties of the universe via a set of 
observed structures distributed throughout space.

• The use of a DeepSet increases accuracy of traditional 
forecasting techniques from 20% to 13% for our dataset

• Histogram pooling achieves similar performance to sum- and 
mean-pool operations

• However, the histogram pool allows us to symbolically discover 
an optimal cosmological feature for cosmic voids, which is 
possible due to the strong connection with traditional pooling 
operators

We use 2000 simulations from the Quijote simulation suite, 
each with ~5000 voids (Villaescusa-Navarro et al., 2020).
• Each void has features, such as radius, ellipticity, and depth

A simple functional form for a DeepSet is:

for a set of vectors {𝒙i}i=1:N, permutation-invariant pooling operator 𝜌, 
learned functions 𝑓 and g, and output vector 𝒚.  

Typical pooling operations include summation, averaging, or max. Our 
proposed histogram pooling operation takes the form:

where 𝑧ij is the j-th latent feature of element i, ak is a hyperparameter 
giving a pre-defined bin position for bin k, σ is a hyperparameter 
controlling the histogram’s smoothness, wjk is the histogram value for 
feature j and bin k, and w is a matrix with its j-th row and k-th column 
as wjk. See Figure 2. 

Our best model yields the following interpretable equation for g:

where R, ẟ, and 𝜖 represent the void radius, depth, and ellipticity.
Our model achieves ~13% error on predictions for 𝛺m, improving over 
classic results of 20%, and allows us to have explicit analytic interpretations.

Figure 3: Value and 
error estimates for 𝛺m 
using the best trained 
histogram model. 
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