Keio University

Supervised convolutional networks for volumetric data enrichment from limited sectional data with adaptive super resolution Mitsuaki Matsuo¹, Kai Fukami^{2,1}, Taichi Nakamura¹, Masaki Morimoto¹, Koji Fukagata¹

1 Department of Mechanical Engineering, Keio University, 2 Department of Mechanical and Aerospace Engineering, University of California, Los Angeles

Introduction

Spatio-temporal fluid big data

- Exponential development of computing power
- Expensive numerical simulations (DNS, LES)
 - CFD data with an immense number of spatio-temporal discretized points^[1]
- Efficient data handling methods are eagerly desired ^[2] [1] Kajishima and Taira, Springer, 2017 [2] Fukami et al., JFM, 2021

Neural-network-based state estimation

- Neural network can reconstruct flow fields from limited data
 - Estimation from sensors to a whole field ^[3]
 - Super-resolution analysis ^[2,4]
- Next challenge: 3D reconstruction from 2D sectional data towards efficient data compression
- Example: a flow around the square cylinder at $Re_{D}=300$

[3] Erichson et al., PRSA, 2020 [4] Fukami et al., JFM, 2019

Methods

2D-3D Convolutional Neural Network ^[5]

- Input: Velocity field of several x-y sectional fields (q_{2D})
- Output: Velocity field of the whole domain (q_{3D})
- Data: a flow around the square cylinder obtained by DNS

Combination with *adaptive sampling*-based super resolution

- Towards the data reconstruction while saving a storage
- Adaptive sampling-based low-resolution data
 - Determine the sampling ratio of the area by accounting for the 'importance'
 - Importance: the spatial standard deviation of velocity

Results

• Reconstructed fields ($\lambda_2 = -0.001$)

- The use of more input sections provides a wake reconstruction with the higher accuracy
- Estimated cross-sectional velocity fields

• The reconstructed fields are in reasonable agreement with the reference DNS $\varepsilon = ||\boldsymbol{q}_{\mathrm{DNS}} - \boldsymbol{q}_{\mathrm{ML}}||_2 / ||\boldsymbol{q'}_{\mathrm{DNS}}||_2$

2. 3D reconstruction from 2D low-resolution cross sections Super-resolution reconstruction from adaptive-sampled low-resolution data

- The estimation accuracy with adaptive sampling is superior to that of conventional average pooling in the *v* and *w* components
- Efficient data compression can be achieved with appropriate pooling methods for each component

 3D reconstruction from adaptive-sampled cross sections Adaptive sampling Average pooling Hybrid

 Hybrid: Average pooling in the u component Adaptive sampling in the *v* and *w* components

• Reasonable reconstruction from only 0.022% of the original utilizing the hybrid method

Conclusion

• 2D-3D CNN was constructed and applied to a flow around a square cylinder

• Reconstructed fields were in agreement with the reference

- Compressed data by 1/4600 of the original
- with adaptive-sampled super-resolution assisstance Reference

M. Matsuo, T. Nakamura, M. Morimoto, K. Fukami, K. Fukagata, "Supervised convolutional network for three-dimensional fluid data reconstruction from sectional flow fields with adaptive super-resolution assistance," arXiv:2103.09020, 2021

Acknowledgement

JSPS (18H03758), Mr. Murakami (Keio University)