Supervised convolutional networks for volumetric data enrichment from limited sectional data with adaptive super resolution

Mitsuaki Matsuo¹, Kai Fukami², Taichi Nakamura¹, Masaki Morimoto¹, Koji Fukagata¹

¹ Department of Mechanical Engineering, Keio University, ² Department of Mechanical and Aerospace Engineering, University of California, Los Angeles

Introduction

Spatio-temporal fluid big data

- Exponential development of computing power
- Expensive numerical simulations (DNS, LES)
- CFD data with an immense number of spatio-temporal discretized points [1]
- Efficient data handling methods are eagerly desired [2]

Neural-network-based state estimation

- Neural network can reconstruct flow fields from limited data
 - Estimation from sensors to a whole field [3]
 - Super-resolution analysis [2,4]
- Next challenge: 3D reconstruction from 2D sectional data towards efficient data compression
- Example: a flow around the square cylinder at Reₚ=300

Methods

2D-3D Convolutional Neural Network [5]

Input: Velocity field of several x-y sectional fields (qₓᵧ)
Output: Velocity field of the whole domain (q₃D)
Data: a flow around the square cylinder obtained by DNS

\[w = \arg \min_w \| q_{3D} - F(q_{2D}; w) \|_2 \]

Results

1. 3D reconstruction from 2D high-resolution cross sections

- Reconstructed fields (L₂ = -0.001)
- The use of more input sections provides a wake reconstruction with the higher accuracy
- Estimated cross-sectional velocity fields

2. 3D reconstruction from 2D low-resolution cross sections

- Super-resolution reconstruction from adaptive-sampled low-resolution data
- The estimation accuracy with adaptive sampling is superior to that of conventional average pooling in the v and w components
- Efficient data compression can be achieved with appropriate pooling methods for each component

Conclusion

- 2D-3D CNN was constructed and applied to a flow around a square cylinder
- Reconstructed fields were in agreement with the reference
- Compressed data by 1/4600 of the original with adaptive-sampled super-resolution assistance

Reference

Acknowledgement

JSPS (18H03758), Mr. Murakami (Keio University)