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Supervised convolutional networks for volumetric data enrichment
from limited sectional data with adaptive super resolution
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Introduction
Spatio-temporal fluid big data

® Exponential development of computing power
® Expensive numerical simulations (DNS, LES)

® CFD data with an immense number of
spatio-temporal discretized points "

® Efficient data handling methods are eagerly desired !
[1] Kajishima and Taira, Springer, 2017 [2] Fukami et al., JFM, 2021

Neural-network-based state estimation

® Neural network can reconstruct flow fields
from limited data

® Estimation from sensors to a whole field 2!

® Super-resolution analysis 4

® Next challenge: 3D reconstruction from 2D sectional
data towards efficient data compression

® Example: a flow around the square cylinder at Re,=300

[3] Erichson et al., PRSA, 2020
[4] Fukami et al., JFM, 2019

Methods
2D-3D Convolutional Neural Network ™!
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[5] LeCun et al., Proc. IEEE, 1998

w = argmin,, ||gsp — F(g2p; w)||2

® Input: Velocity field of several x-y sectional fields (¢,p)
® Output: Velocity field of the whole domain (¢5p)
® Data: a flow around the square cylinder obtained by DNS

Combination with adaptive sampling-based
super resolution

® Towards the data reconstruction while saving a storage
® Adaptive sampling-based low-resolution data

® Determine the sampling ratio of the area
by accounting for the ‘importance'

® Importance: the spatial standard deviation of velocity
Standard deviation map Adaptive sampled field

=3
Results

1. 3D reconstruction from 2D high-resolution cross sections
® Reconstructed fields (4, =-0.001)

High-resolution field

Reference 5 sections

Error: 0.325

Error: 0.520

® The use of more input sections provides a wake
reconstruction with the higher accuracy

® Estimated cross-sectional velocity fields
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® The reconstructed fields are in reasonable agreement
with the reference DNS
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2. 3D reconstruction from 2D low-resolution cross sections

® Super-resolution reconstruction from adaptive-sampled
low-resolution data
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® The estimation accuracy with adaptive sampling is
superior to that of conventional average pooling
in the v and w components

@ Efficient data compression can be achieved
with appropriate pooling methods for each component

® 3D reconstruction from adaptive-sampled cross sections
Hybrid

Average pooling Adaptive sampling
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&= 0.387 (0.0244%)
® Hybrid: Average pooling in the u component
Adaptive sampling in the v and w components
® Reasonable reconstruction from only 0.022% of the
original utilizing the hybrid method

Conclusion

® 2D-3D CNN was constructed and applied to a flow
around a square cylinder

® Reconstructed fields were in agreement with the reference

® Compressed data by 1/4600 of the original
with adaptive-sampled super-resolution assisstance
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