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Background: Atomistic ML-Potentials
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Ab Initio

MnR̈ = −∇〈Ψ|He|Ψ〉
He|Ψ〉 = Ee|Ψ〉

Classical

MR̈ = −∇V (R)

=⇒ Find V (R) as function only of the atomic coordinates, atomic types
and cell size, without taking electronic structure explicitly into account
in data-driven way:

〈Ψ|He|Ψ〉 !
= V (R)

[1]

Descriptors/Symmetry functions:

• SOAP [2, 3]
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• Graph NNs, e.g. SchNet [4]

Fitting methods:

• GPR

• NNs

Selection Methods

Distribution comparisons for random selection and uniform selection in global and atomic energies
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Method can be summarized in 3 steps:

1. Run multiple MD simulations at different tem-
peratures and pressures to optimally sample
configuration space

2. Select configurations by sampling uniformly in

• global energy E =
∑N
i Ei

• forces ‖fi‖
• atomic energies Ei

3. Future work: Perform Ab Initio single point
calculations on selected configurations

=⇒ Figure shows that atomic energies sampling enhances sampling of low probability configurations/configurations of the long tail
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[3] Albert P. Bartók, Risi Kondor, and Gábor Csányi. “On representing chemical environments”. In: Phys. Rev. B 87 (18 2013), p. 184115.
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Test-Dataset Performance

The figure shows a comparison of errors in force predictions for NN-models (of different sizes with different hyperparameter
choices) trained on data-sets that were selected by the different selection methods. From left to right we show plots for
the maximum error (Max), root-mean-square error (RMSE), and the mean absolute error (MAE) in the ML models.
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One can see a clear trend in the prediction errors: The models trained on data-sets that were generated by the force or
atomic energy selection methods achieve lower Max and RMSE errors than the other methods (random or based on global
energy).

Simulation Results

To further analyse the influence of the selection methods, molecular dynamics (MD) simulations of the sodium chloride
(NaCl) system with 1000 atoms for up to 1000 ps in the NV T ensemble at 1400K driven were performed. This should
expose the models to a wide variety of new configurations.
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The figure shows the comparison of the Na-Na radial distribution function computed from the reference Born-Meyer-
Huggins-Tosi-Fumi (BMHTF) simulation and NN-driven (left) and GPR-driven (right) MDs trained on 512 (NN) or 128
(GPR) configurations selected via the global energy and atomic energies selection method.
We see that, in the case of the global data-selection methods, the radial distribution functions contain non-physical short
range peaks implying the training data did not sufficiently represent the potential energy surface. In the case of the atomic
energies however, no such short range peaks arise and the function fits that of the reference BMHTF potential.


