CosmicRIM : Reconstructing Early Universe

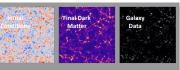
by Combining Differentiable Simulations with Recurrent Inference Machines

Chirag Modi^a, François Lanusse^b, Uroš Seljak^c, David N. Spergel^a, Laurence Perreault-Levasseur^{a,d}

(a) Center for Computational Astrophysics, Flatiron Institute (b) AIM, CEA, CNRS, Université Paris-Saclay (c) Department of Physics, University of California, Berkeley (d) Department of Physics, Université de Montréal, Canada

Motivation

<u>Aim</u> : To reconstruct the **Gaussian** initial conditions^[1] at the beginning of the Universe from a sparse galaxy sample data <u>Challenge</u> :

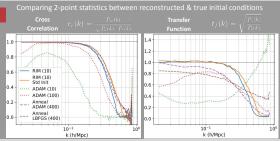


- 1. solve an inverse problem in high-dimensions (~10⁸) to reconstruct density at all points in space
- 2. forward model is complex, non-linear and expensive N-body simulations

<u>Approach</u> : Combine *differentiable* cosmological N-body simulations, like **FlowPM**^[2] with *learnt optimization* methods to learn inference schemes^[3] and tackle these challenges efficiently.

Experiments

Forward model: 64³ particles, 2 step PM sim. with 2nd order bias model **CosmicRIM** outperforms traditional optimization, even with *physically* motivated annealing at **40x** less cost **Informed** initial position^[5] **x**₀ can improve reconstruction (see orange)



CosmicRIM

Setup: To obtain the MAP estimate given the likelihood *p* of the observed data **y** for the initial conditions **x** and Gaussian prior p_{θ} on the initial conditions with known power spectrum

 $\max_{\mathbf{x}} \ln p(\mathbf{x}, \mathbf{y}) = \max_{\mathbf{x}} \left[\ln p(\mathbf{y} | \mathbf{x}) + \ln p_{\theta}(\mathbf{x}) \right]$

<u>**RIM**</u> (Recurrent inference machine)^[4] : learn optimization by training a recurrent neural network $(h_{\psi}g_{\psi})$ to learn the update equations at time step t, given state s_{\star}

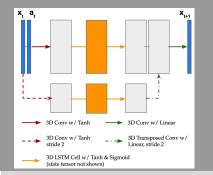
 $\begin{aligned} \mathbf{s}_{t+1} &= \mathbf{s}_t + h_{\phi}(\mathbf{s}_t, \nabla_x \ln p(\mathbf{x}, \mathbf{y}), \mathbf{x}_t), \\ \mathbf{x}_{t+1} &= \mathbf{x}_t + q_{\phi}(\mathbf{x}_t, \nabla_x \ln p(\mathbf{x}, \mathbf{y}), \mathbf{s}_{t+1}) \end{aligned}$

Training loss function for a 10 step RIM

 $\mathcal{L} = \sum_{t=0}^{10} (\mathbf{x}_t(\phi) - \mathbf{x}_{ ext{true}})^2$

Architectural modifications

- **1.** <u>Replace gradients</u> $\nabla_x \ln p(x,y)$ in the update functions (h,g) with update predicted by **ADAM** algorithm **a**.
- **2.** <u>U-Net</u> architecture with different LSTM cells in **parallel** to learn updates for large and small scales separately

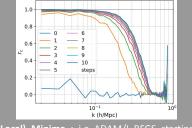


What CosmicRIM learns?

Physically motivated annealing : large scales have higher SNR & linear dynamics

This led [6] to develop annealing scheme that smooth the likelihood on small scales & reconstruct the large scales first.

RIM implicitly learns a similar path to reconstruction



(Local) Minima : i.e ADAM/L-BFGS starting from RIM output don't improve results

Outlook

- First application combining complex, non-linear albeit differentiable forward models with learnt optimization schemes for high-dimensional inference problems.
- <u>40x speed up</u> & better reconstruction of the initial conditions of the Universe with CosmicRIM over other approaches
- <u>Implicitly learning</u> the optimization path otherwise strictly imposed with physically motivated annealing schemes.
- <u>Challenge</u>: High memory requirements for training can be a bottleneck but potential solutions can be found in splitting the optimization path and sequential learning

References

Seljak, G. Aslanyan, Y. Feng & C. Modi. arXiv:1706.06645
M.Andrychowicz et.al. arXiv:1606.0447
C. Modi. F. Lanusse. U. Seljak. (*FlowPM*) arXiv:2010.11847
P. Putzky & M. Welling. (*RIM*) arXiv:1706.04008
D. Eisenstein et.al. (Std. Reconstruction) ApJ.664(2):675–679
C. Modi. V. Feng, U. Seljak. arXiv: 1805.02247

ICLR 2021 Workshop Deep Learning for Simulation