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Aim : To reconstruct the Gaussian initial conditions* at the
beginning of the Universe from a sparse galaxy sample data

Challenge :

1. solve an inverse problem in high-dimensions (~10%) to reconstruct density at all points in space
2. forward model is complex, non-linear and expensive N-body simulations

Approach : Combine differentiable cosmological N-body simulations, like FlowPM?! with learnt
optimization methods to learn inference schemes!® and tackle these challenges efficiently.

CosmicRIM

Setup : To obtain the MAP estimate given the
likelihood p of the observed data y for the
initial conditions x and Gaussian prior p, on
the initial conditions with known power
spectrum

maxy Inp(x,y) = maxy [Inp(y|x) + Inpy(x)]

RIM (Recurrent inference machine)® : learn
optimization by training a recurrent neural
network (h g ) to learn the update equations
at time step t, given state S,

St41 =S¢ + hd)(stv vac hlp(xv y)vxt)v
Xe1 = Xt + g (Xe, Vo Inp(x,y), se11)

Training loss function for a 10 step RIM

L= Ziﬂo (xt(9) — xtTue)2

Architectural modifications

1. Replace gradients V In p(xy) in the
update functions (h,g) with update predicted
by ADAM algorithm a,
2. U-Net architecture with different LSTM
cells in parallel to learn updates for large and
small scales separately

3D Conv w/ Tanh — 3D Conv w/ Linear

3DConvw/Tanh  _ . _ 3D Transposed Convw/
stride 2 Linear, stride 2

3D LSTM Cell w/ Tanh & Sigmoid
(state tensor not shown)

Experiments

Correlation

Forward model : 64° particles, 2 step
PM sim. with 2" order bias model
CosmicRIM outperforms traditional
optimization, even with physically
motivated annealing at 40x less cost
Informed initial position®™ x, can
improve reconstruction (see orange)

What CosmicRIM learns?

Physically motivated annealing : large scales
have higher SNR & linear dynamics

This led [6] to develop annealing scheme that
smooth the likelihood on small scales &
reconstruct the large scales first.

RIM implicitly learns a similar path to
reconstruction
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(Local) Minima : i.e ADAM/L-BFGS starting
from RIM output don’t improve results
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Comparing 2-point statistics between reconstructed & true initial conditions

Transfer
Function
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Outlook

e First application combining complex,

non-linear albeit differentiable forward
models with learnt optimization schemes
for high-dimensional inference problems.
40x speed up & better reconstruction of
the initial conditions of the Universe with
CosmicRIM over other approaches
Implicitly learning the optimization path
otherwise strictly imposed with physically
motivated annealing schemes.
Challenge : High memory requirements for
training can be a bottleneck but potential
solutions can be found in splitting the
optimization path and sequential learning
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