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Neural network potentials (NNP) 
are unreliable outside of training 
data domain. 

Increasing breadth of data is 
beneficial to improve NNP 
performance, but exhaustive 
exploration is very expensive.

Uncertainty quantification to evaluate robustness of 
neural network potential
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Expanding training set with adversarial attacks on 
uncertainty of models

Therefore, assessing trustworthiness of NNP in configurational domains is 
essential. Quantifying uncertainty of models helps to distinguish unseen 

domains from training domains. 

Finding local maxima of differentiable uncertainty metric

Expanding phase space in a double well potential

Adding new adversarial geometries 
in an active learning loop

By backpropagating the adversarial 
loss through the NN committee, the 
displacement �  is updated using 
gradient ascent techniques. 

�

Convergence to local maxima of 
adversarial loss corresponds to 
geometries with high uncertainty and 
low energy.
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Predicting double well potential given only data in a single well

Using the adversarial sampling strategy, 
median RMSE of final generation is two 
to three times lower than random 
sampling strategy, even though number 
of data points is smaller.

Lower energy range for adversarially 
sampled points: beneficial for real 
materials/molecular systems where high-
energy configurations will not be visited in 
production simulations.

Adversarial sampling vs random sampling

Double well potential

Ammonia
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Random sampling: configurations have high energies but low diversity.
Adversarial sampling: configurations within reasonable energy range but high diversity.

Improvement in energy barrier prediction and 
stability of molecular dynamics simulation
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Summary

We propose a new sampling strategy for NNP by combining uncertainty 
quantification, automatic differentiation, adversarial attacks, and active 
learning. This strategy allows data-efficient NNP bootstrapping with 
parallel atomistic simulations to efficiently explore configurational space.
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