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e Numerical simulators require substantial efforts to build. Different
models needed to be built for different scenarios.

e High fidelity simulation based on numerical models demands x* v* () —x*, v** (P eyt ytl
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perceptron and graph inductive architectures. The trained model is ~10
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We use graph to describe the fluid field, where fluid particles are
defined as nodes in the graph. Two types of graph neural networks are
proposed to emulate the different physical processes involved in fluid
dynamics. They can be divided into two types of graph networks (GN) & ..
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We use node-focused GN to predict advection and projection process eﬁ"ﬁ_\) - Cd x5
in fluid simulation. Advection net is responsible for the prediction of = S
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advection effect and pressure net is responsible for pressure
projection. In node-focused network, the final output of the network is a
set of node features (e.g. particle’s acceleration, particle’s pressure) .
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Model predicts reasonable pressure distribution

For a specific layer of node-focused network, the update rule is
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defined as:

1 Quantitative comparison with Ground Truth on test case

-1 Density error Velocity divergence AVETES COamieT
0 > fj( N )W(Iri —rj|, h) (1) . . Case Model P Y & distance (mm) 0.0307
a,’ = W 7 +f VieN (2), Mean  Max Mean  Max Mean Max 0.025 -
2. W(lri —rj|,h) Dam Collanse  FON (this work)  0.0461 0.0900 00195 0.0280 242 3011 B
¢® _ g(w . a(l)) P Ground Truth ~ 0.0380 0.0710 0.0190 0.0268 - : 5 0.020 -
Z z E— FGN (this work) 0.0541 0.1350 0.0207 0.0431 248  29.6 =
3 Edge-focused Network Ground Truth 0.0429 0.0966 0.0196 0.0398 - - a8 20127
()]
. . g 0.010 A
We use edge-f_ocused GN to drive away pgr’_ucles that are too close to O Evaluation of sub-networks g  4t—0.001s
each other, which emulates the elastic collision process. In 0.005 - —— dt=0.002s
edge-focused network, the input of the network is a set of edge Model Dynamical system  Model Output  Evaluation metric Error — €lL=0.003s
, 5 o . X i —— dt=0.004s
features, and in the last layer all edge embeddings are aggregated to AdvectionNet 1w =g+ vV2u  prediction of 1 Normalized MAE  12.4% + 5.6% 00007 . . . . . . . .
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

nodes.

The update rule of edge-focused network is defined as:

Pressure Net
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prediction of p  Relative tolerance
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d  Runtime analysis

e Total trainable parameters: 41996, can be trained within 2 hrs (1M iterations)

on a single GPU.

e Single frame inference time is ~40 ms for a 10000 particles scene, which is
~15 times faster than baseline solver (Moving Particle Semi-implicit method).
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Model remains converge under different time step sizes

Conclusion

A fast data-driven model for particle-based fluid simulation is
proposed, which can greatly improve calculation efficiency without
compromising much accuracy and stability.



