
The Model That Can Do It: Finite 

Volume Neural Network (FINN)

Finite Volume Neural Network: Modeling 

Subsurface Contaminant Transport

Is a Physics-Informed Neural Network enough 

for modeling spatio-temporal problems?

The short answer: NO!

The long answer:

• The network training depends heavily on the derivatives 
𝜕𝑢

𝜕𝑥
and 

𝜕𝑢

𝜕𝑡
.

• When the training data is not distributed spatially or temporally, the 

approximation of derivatives deteriorates.

• Cannot generalize when tested against different boundary conditions.

Our proposed solution: Hybrid model combining the well-defined structure 

of the Finite Volume Method and learning ability of Neural Ordinary 

Differential Equation

Trichloroethylene (TCE) dissolved concentration:
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TCE total concentration:
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Dirichlet boundary condition at 𝑥 = 0 and Cauchy boundary condition at 𝑥 = 𝐿.

Experiment

Non-linear Diffusion-Sorption

Conclusion and Future Work

• Using the numerical structure of the Finite Volume Method enables 

approximation of differential operators and conservative fluxes.

• FINN produces excellent generalization ability.

• Extension of FINN to applications with spatially heterogeneous soil 

parameters.

• Uncertainty quantification of the model using Bayesian method.
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Illustration of the Flux and State Kernels in the FINN.
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ℱ: Flux Kernel

(learn differentials, calculate fluxes and BCs, learn constitutive 

relationships)
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𝓢: State Kernel

(learn reaction term, integrate with ODE solver)

𝒮𝑖 = ℱ𝑖 +Φ𝜓 𝑢𝑖 ≈
𝜕𝑢𝑖
𝜕𝑡

Results
Synthetic Dataset

Dissolved concentration profile prediction mean (with confidence interval) at 𝑡 = 5 000 days compared with the test 

dataset obtained using TCN (top left), ConvLSTM (top right), DISTANA (bottom left), and FINN (bottom right).

Comparison of MSE values between different deep learning architectures

Experimental Dataset

Dissolved concentration profile (at 𝑥 = 𝐿) prediction of the FINN method (blue line) during training using data from core 

sample #2 (top left), during testing using data from core sample #1 (top right) and total concentration profile (at 𝑡 = 𝑡𝑒𝑛𝑑) 

prediction using data from core sample #2B (bottom left). The predictions are compared with the experimental data (red 

circles) and the results obtained using the calibrated physical model (orange dashed line). The extracted retardation factor 

as a function of 𝑐 is shown on the bottom right plot.
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The synthetic data is discretized into 26 control volumes and 2 000 time

steps. We train using time steps 0 – 500 of the training dataset. The 

generalization is then tested by extrapolating the prediction for the training 

dataset until time step 2 000 and to predict a completely unseen test dataset 

(different boundary conditions).

FINN

https://github.com/timothypraditia/finn

