Joint surrogate modelling and reconstruction of Laser-Wakefield Acceleration by invertible neural networks

F. Bethke, R. Pausch, P. Stiller, A. Debus, M. Bussmann, N. Hoffmann

Motivation
Surrogate model for computationally demanding Laser-Wakefield Acceleration
- Reconstruction of experimental diagnostics requires fast approximation of non-linear mapping

Simulation
- plasma cavity
- electron bunch
- 25 μm

Method
Invertible Neural Network
- simulation and reconstruction done by same network
- trained bi-directionally
- resolves ambiguous inverse problems
- uncertainty quantification for inverse pass

Results
Comprehensive study on 2.7 TB of training data generated by PIConGPU.
- inference time: 5 ms
- surrogate model: MSE < 0.007
- reconstruction: relative error < 8.2%

Application in Radiation Physics
Very fast interpolation in derived moments of energy spectrum.

1) Peak Energy

![Peak Energy Diagram](image)

2) Full Width at Half Maximum

![Full Width at Half Maximum Diagram](image)

Parameters: reconstructed

Posterior of INN
each mode = possible parameter configuration

Energy spectrum: generated