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Introduction
● Investigate laws of nature at the scale of 10-18 meters by the interaction 

of elementary particles at collider experiments: 
 Use simulations of the occurring processes via Monte Carlo (MC) 

event generators
● However, MC based simulations are computationally costly

 Dominated by calorimeter simulations (energy measurements)
 Becoming more complex due to highly granular calorimeters
 Hence potential bottleneck for future experiments 
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• Simulate chains of particles, so-called showers, initiated by incoming 
primary particles.

• Consider two different types of particles:
•  Photons (1 million training examples) – incident on the 
electromagnetic calorimeter 

•  Charged pions (0.5 million training examples) – incident on the 
hadronic calorimeter 

Cell Layout: 30 x 30 x 30 
(Photon showers)

Cell Layout: 48 x 13 x 13 
(Pion showers)

We train and evaluate three generative models in this study: 
Generative Adversarial Network (GAN), GAN optimizing a 
Wasserstein loss (WGAN), and Bounded-Information Botteleneck 
Autoencoders (BIB-AE)

GAN
● First generative architecture used for 

simulating showers in particle physics
● Apply mini-batch discrimination
● Trained and evaluated on photon 

showers  

WGAN

BIB-AE and Post-Processor

● Unifies features of GANs and Autoencoders [2] 
● WGAN-like critics evaluate the quality of reconstructed images
● Latent regularization is improved by an additional critic and a Maximum 

Mean Discrepancy (MMD) term
● Additional Post-Processor network [3], trained in a second step, is used to 

improved per-pixel energies
● Sampling from encoded latent space via multi-dimensional Kernel Density 

Estimation (KDE) [4]

● Differential distributions of physics quantities between ground truth (GEANT4) and 
the different generative models 

• The energy contained in a single pixel (visible cell energy)
• Total energy sum over all pixels in a shower
• The number of non-zero pixels (number of hits)
• First to achieve this level of precision in differential distributions for high-

resolution detector

Our major goal is to speed-up the sampling process:
● We observe speed-ups of up to three orders of magnitude
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● Alternative to classical GAN training:
• Helps improve the stability of the training
• Use Wasserstein-1 distance as a loss with 

gradient penalty 
● Second network to constrain energy  
● Latent optimization method (LO) [1] is 

employed for pion showers
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