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Motivation Results Noise robustness
Neural networks in science & engineering POD coefficients estimation * Perturb the input with Gaussian noise
. . . 2nd . 3rd

+ NNs have acquired citizenship as a surrogate « 1st order inpui‘ ai, = a™' = {a1,ay} IGEPUL LSE, linear MLP — a . nonlinear MLP ~ @
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methods to improve the practicability of NNs? e vz

- The response of the LSE is more sensitive than that of the MLPs
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MLP Vs linear Stoc as“C es'llmqhon Reference x LSE O  Linear MLP ® Nonlinear MLP . . .
[L: error norm]  LSE: 1.00, linear MLP: 1.00, nonlincar MLP: 0.0119 * Factor contributing to the noise robustness

- Consider a canonical fluid flow regression problem to compare
+ Shallow linear MLP model: no middle layer, no bias

multilayer perceptron (MLP) and linear stochastic estimation (LSE) * Nonlinear activation function works well for estimation
. . - Increase ratio of the L. error norm & error surfaces of output
+ Also focus on noise robustness and perform error-curve analysis - 2nd/3rd order i _ ~2nd 3rd ? P
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- Training configuration 4202442024 = % ) i
Input: low-order POD coefficients a Fla, a) a, + The noise drastically deforms the error surface of the LSE
. : low- in = f(a1,a2
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- Output: high-order POD coefficients aous = {a3,a4,as5,a6} 2 2 g H
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- The POD coefficients a; can be approximated in Fourier forms \ A =
208 Pali o . . . . ..
 High-order POD coefficients can be represented by the quadratic N | = The differences between MLP and linear stochastic estimation (LSE)
expression of a1 and a due fo its friadic interaction ¥4 420 2 4a-54 20 2 4 = was investigated by considering a fluid flow regression problem
A [3] Loiseau et al., Applications, 2020 + Efficacy of nonlinear activation can be observed
+ Estimation models [4] Nair et al., Phys. Rev. E, 2018 Reference + a'** & a0 ™! Input attributes Y

+ MLP: aggregate of a minimum unit called " perceptron’ * Noise robustness with error-curve analysis
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- The output {a3, a4} requires the input up to 2nd order term a - The linear MLP was more robust for noise than the LSE

wyLp = argming,, . o ||@ou — M(ain; wyLp)||2
« LSE: express output data as a linear map of input data * The output {as, as} requires the input up to 3rd order term a

wisp = argming,__||@ou — amwisslls = (@imwrss)? amwise) " (@mwrss)’ aou * Nonlinearity can be replaced by giving a proper data input + Noise robustness was visualized by using error surface

drd - Optimization method contributed to the noise robustness



