

Clues for noise robustness of state estimation: Error-curve quest of neural network and linear regression

Taichi Nakamura^[1], Kai Fukami^[2,1], Koji Fukagata^[1]

[1] Mechanical Engineering, Keio University (Japan), [2] Mechanical and Aerospace Engineering, University of California, Los Angeles

Motivation

Neural networks in science & engineering

 NNs have acquired citizenship as a surrogate for linear methods in science and engineering thanks to capabilities to consider nonlinearity

- · Limitation of NNs: lack of interpretability
- ⇒ Linear methods are still indispensable for their transparency
- Our interest: Can we obtain any hints from interpretable linear methods to improve the practicability of NNs?

[1] https://t3.ftcdn.net/jpg/01/90/18/04/360_F_190180455_Jmyl2Mq VogM80zFehWZ49rAM65il8AaH.jpg

MLP vs linear stochastic estimation

- Consider a canonical fluid flow regression problem to compare multi-layer perceptron (MLP) and linear stochastic estimation (LSE)
- · Also focus on noise robustness and perform error-curve analysis

Problem setting

• Take proper orthogonal decomposition (POD) for a flow around two-dimensional cylinder at $Re_0 = 100$ [2]

[2] Kor et al., J Fluid Sci. Technol., 2017

- Training configuration
- Input: low-order POD coefficients $oldsymbol{a}_{ ext{in}} = f(a_1, a_2)$
- $m{\cdot}$ Output: high-order POD coefficients $m{a}_{ ext{out}} = \{a_3, a_4, a_5, a_6\}$
- The POD coefficients a_i can be approximated in Fourier forms
- High-order POD coefficients can be represented by the quadratic expression of a_1 and a_2 due to its triadic interaction [3][4]
- Estimation models

[3] Loiseau et al., Applications, 2020[4] Nair et al., Phys. Rev. E, 2018

· MLP: aggregate of a minimum unit called `perceptron'

$$m{w}_{ ext{MLP}} = \operatorname{argmin}_{m{w}_{ ext{MLP}}} ||m{a}_{ ext{out}} - \mathcal{M}(m{a}_{ ext{in}}; m{w}_{ ext{MLP}})||_2$$

· LSE: express output data as a linear map of input data

 $\boldsymbol{w}_{\mathrm{LSE}} = \mathrm{argmin}_{\boldsymbol{w}_{\mathrm{LSE}}} ||\boldsymbol{a}_{\mathrm{out}} - \boldsymbol{a}_{\mathrm{in}} \boldsymbol{w}_{\mathrm{LSE}}||_2 = ((\boldsymbol{a}_{\mathrm{in}} \boldsymbol{w}_{\mathrm{LSE}})^T \boldsymbol{a}_{\mathrm{in}} \boldsymbol{w}_{\mathrm{LSE}})^{-1} (\boldsymbol{a}_{\mathrm{in}} \boldsymbol{w}_{\mathrm{LSE}})^T \boldsymbol{a}_{\mathrm{out}}$

Results

POD coefficients estimation

- 1st order input $a_{in} = a^{1st} = \{a_1, a_2\}$
 - · LSE vs linear MLP vs nonlinear MLP

[L₂ error norm] LSE: 1.00, linear MLP: 1.00, nonlinear MLP: 0.0119

- · Nonlinear activation function works well for estimation
- 2nd/3rd order input $a_{\rm in}=a^{
 m 2nd}$ or $a^{
 m 3rd}$

$$\mathbf{a}^{\text{2nd}} = \{a_1, a_2, a_1 a_2, a_1^2, a_2^2\}$$
$$\mathbf{a}^{\text{3rd}} = \{a_1, a_2, a_1 a_2, a_1^2, a_2^2, a_1^2 a_2, a_1 a_2^2, a_1^3, a_2^3\}$$

· LSE vs linear MLP

- The output $\{a_3,a_4\}$ requires the input up to 2nd order term $oldsymbol{a}^{2\mathrm{nd}}$
- ullet The output $\{a_5,a_6\}$ requires the input up to 3rd order term $oldsymbol{a}^{
 m 3rd}$
- · Nonlinearity can be replaced by giving a proper data input

Noise robustness

· Perturb the input with Gaussian noise

· Input: LSE, linear MLP $\rightarrow a^{2\mathrm{nd}}$ nonlinear MLP $\rightarrow a^{3\mathrm{rd}}$

- · The response of the LSE is more sensitive than that of the MLPs
- · What does contribute to noise robustness in the linear MLP?
- · Factor contributing to the noise robustness
- · Shallow linear MLP model: no middle layer, no bias
- · Increase ratio of the L2 error norm & error surfaces of output

- Differences in optimized values are caused by optimization methods choice (LSE: least squares method, MLP: gradient method)
- The noise drastically deforms the error surface of the LSE

Conclusions

- The differences between MLP and linear stochastic estimation (LSE)
 was investigated by considering a fluid flow regression problem
- · Efficacy of nonlinear activation can be observed
- · Noise robustness with error-curve analysis
- · The linear MLP was more robust for noise than the LSE
- · Optimization method contributed to the noise robustness
- · Noise robustness was visualized by using error surface