Improving Solar Cell Metallization Designs using Convolutional Neural Networks

Overview
- **Topology Optimization** - Used to design unconventional complex metallization patterns for solar cells leading to better efficiency of output.
- **SolarNet** - a CNN based reparameterization scheme that can be used to obtain improved metallization designs.
- **Modification of optimization domain** - Rather than optimizing the electrode material distribution directly, the weights of a CNN model are optimized.
- SolarNet improves the performance of solar cells compared to the traditional TO approach.

Experimental Results

<table>
<thead>
<tr>
<th></th>
<th>CNN</th>
<th>MMA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.34%</td>
<td>12.47%</td>
</tr>
<tr>
<td></td>
<td>12.20%</td>
<td>12.05%</td>
</tr>
</tbody>
</table>

Schematic Workflow

Conclusion
- **SolarNet** - Optimizing directly the weights of CNN and generating the topological design of the front metallization as its output.
- Improvement of performance of solar cells over the standard topology optimization scheme.
- Deep learning strategies such as CNN exhibit potential for physics based optimization problems.