
ProGAE: A Geometric Generative Model  
for Disentangling Protein Conformational 
Space
Introduction

 Recent work has investigated using machine learning to model the 

conformational space of proteins (Bhowmik et al., 2018; Ramaswamy et 

al., 2020).
 We are interested in achieving greater interpretability of the models used 

to generate the conformational space. 
● Namely, we consider more detailed geometric interpretability 

 We propose a novel architecture, ProGAE:
● Inspired by recent work on unsupervised geometric disentanglement 

(Tatro et al., 2020)
● A geometric autoencoder that directly learns from 3D protein structure
● Separately encodes intrinsic and extrinsic geometries for greater 

latent space interpretability     
 We summarize our results:

  ProGAE is able to reconstruct our proteins from datasets to within the 

experimental resolution associated with simulation
 As the datasets used are simulations of proteins binding to 

experimental drugs.
● The extrinsic latent space can be used to classify the drug the 

protein is bound to and infer physiochemical properties
 The presence of the intrinsic signal improves the quality of bond 

geometry in the reconstructions

Results
Establishing the contributions of intrinsic and extrinsic geometric signals to 
protein reconstruction

Network Architecture
A model for separately encoding intrinsic and extrinsic protein geometry

 The input of ProGAE includes:
● An intrinsic signal; the length of pseudbonds in the protein trace
● An extrinsic signal; the orientations of bonds in the protein backbone

 These input signals are separately encoded:
● To create two distinct latent spaces for greater generative control 

 The corresponding ProGAE output, after joint decoding, are the 3D 

coordinates of the backbone atoms.  
 The structure of the architecture uses geometric convolutional layers:

● Variants of graph convolutions
● Allows the architecture to scale for large proteins such as the Sars-

Cov-2 S protein simulation from one of our datasets
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A diagram of the ProGAE architecture, displaying the separate encoding of the intrinsic and extrinsic signals, and the 
following joint decoding to backbone atom coordinates. 
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Discussing the generation of protein conformations 

ProGAE reconstructions of S protein (left) and hACE2 data (right). Blue and red structures correspond to the reconstructed 
and ground truth structures, respectively.

Projections of the ProGAE intrinsic and extrinsic latent embeddings, with color denoting the drug responded to in 
simulation. Clearly the extrinsic space is capturing the variation due to ligand binding. 

Reconstructions of proteins using ProGAE. The top row displays the ground truth, while the bottom row displays 
the corresponding generation by the network. Color in the bottom row indicates the log of atom-wise L2 error. 
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Results of linear regression on the extrinsic latent space for predicting physical/chemical properties of the drugs that a 
protein is bound to. Error is normalized for interpretability. For comparison, performance of linear regression on the PCA  

embeddings of the orientation of the backbone bonds is reported.

Percentage of bonds that are 10% shorter than the minimum seen in training data. The difference (Diff) between the 
intrinsic+extrinsic ProGAE and the extrinsic-only ProGae is reported.
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