
Datasets and domain generality 

Learning general-purpose CNN-based simulators for astrophysical turbulence
Alvaro Sanchez-Gonzalez*,1 Kimberly Stachenfeld*,1 Drummond Fielding,2 Dmitrii Kochkov,3 Miles Cranmer,4 
Tobias Pfaff,1 Jonathan Godwin,1 Can Cui,2 Shirley Ho,2 Peter Battaglia1

 

1 DeepMind
2 Flatiron Institute

3 Google Research
4 Princeton University 

Model 

dCNN block: stack of 7 dilated CNNs to gradually increase and decrease perceptual range.

Our model uses N=4 of these stacks.

Perceptual range at each convolution in the stack

dCNN

Stability

Temporal coarsening

Spatial coarsening

Running time

Constraint preservation Generalization to 
different states

Generalization to larger boxes

One model → Accurate performance in 4 different domains

Quantitative 
match

Qualitative 
match

Models trained without 
noise can be unstable

Using training noise helps 
fixing stability

Unlike the ground truth solver, the learned model is 

not very sensitive to the specific integration 

timestep, and can operate well on many timesteps
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Better RMSE than Athena at 323

Better spectrum than Athena at 323  and 643

Simulator Time (s)

Athena++ 323 ~4

Athena++ 643 ~60

Athena++ 1283 ~1000

Model 1283 → 323 ~20-30

Model 1283 → 323 (GPU) ~1

● Athena++
○ Scales O(resolution4)
○ CPU only

● Learned model:
○ Up to 1000x faster than Athena at 128

Trained on a 
single box size

L=0.75

Test box L = 2

Trained on 
multiple box 

sizes
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Ground 
truth

1D Kuramoto-Sivashinsky (KS) Equation

2D Incompressible Turbulence

3D Uniform Compressible Decaying Turbulence

3D Mixing Layer Turbulence with Radiative Cooling

Rollout

Energy RMS error 
(trained with noise) 

One-step

The learned model can operate at coarser discretizations of the problem more effectively than the ground truth solver

Training range

Training without noise does not preserve constraints

Training with noise helps....sometimes..

1D KS 
total momentum 
(should stay at 0)

2D Incompressible 
velocity field divergence

(should be 0)

3D turbulence 
(should stay at 2)

Generalization to longer trajectories:

Does not generalize to more developed turbulence

Generalization to different initial conditions:

Generalizes to higher solenoidal components

Fails to generalize to higher compressive
components

When extrapolating to a box size larger or smaller than 
those seen during training, the model trained on 
multiple box sizes does not predict the expected 
cooling velocity, which is a function of the box size.

The model requires training on multiple 
box sizes to be able to produce plausible 
predictions for larger box sizes

Energy RMS error

Perceptual range of a single dilated 
convolution with a dilation rate of 2

We train a general-purpose model to learn the transition function between pairs of states 
for 1D, 2D, or 3D grids. At test time, we apply the model multiple times from an initial state.

Chaotic, unstable, nonlinear dynamics Relevant to planet, star, black hole, and galaxy formation

Describes atmospheric flows on planets Captures cooling during galaxy formation 

U-shaped stack
See also: Ronneberger et al. (2015)

Dilated Convolution
Yu & Koltun (2015)

Introduction
- Turbulence simulation is important to understanding 

astrophysical phenomena like galaxy formation.

- Numerical solvers (like Athena++) are 
computationally expensive at high resolution, and 
very inaccurate at low resolution.

- Question: To what extent can learned models 
supplement or replace traditional simulators for 
astrophysics?

- Highlights:
- Domain-general, fully-learned convolutional 

models for simulation

- Same architecture can learn to predict different 
types of turbulence

- Comparisons to coarsened numerical solver  in 
terms of spatial and temporal resolution, 
numerical stability, and generalization 
performance
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Abstract
Given the rise of machine learning (ML) for simulation, 
an important question is: to what extent can learned 
models supplement or replace traditional simulators?
Here we develop a fully learned simulator model based 
on domain-general Convolutional Neural Network 
(CNN) methods, and study its performance on a range 
of turbulence problems in astrophysics.
We compare the learned model to specialized PDE 
solvers in terms of spatial and temporal resolution, 
numerical stability, and generalization performance. 
We find that the learned models outperform 
coarsened solvers on certain metrics, particularly in 
their ability to preserve high-frequency information at 
low resolution, and describe ways to improve 
generalization beyond the training distribution.
To our knowledge, our model is the first to be trained 
on Athena++ (a state-of-the-art simulator widely used 
in computational fluid dynamics and 
magneto-hydrodynamics), and more generally, the first 
fully-learned astrophysical turbulence simulator.

1D Kuramoto-Sivashinsky (KS) Equation

2D Incompressible Turbulence

3D Uniform Compressible Decaying Turbulence

3D Mixing Layer Turbulence with Radiative Cooling

Chaotic, unstable, nonlinear dynamics Relevant to planet, star, black hole, and galaxy formation

Describes atmospheric flows on planets Captures cooling during galaxy formation 
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