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Introduction Datasets and domain generality Spatial coarsening

One model — Accurate performance in 4 different domains

- Turbulence simulation is important to understanding The learned model can operate at coarser discretizations of the problem more effectively than the ground truth solver
astrophysical phenomena like galaxy formation. 1D Kuramoto-Sivashinsky (KS) Equation 3D Uniform Compressible Decaying Turbulence Better RMSE than Athena at 323 /
. . Chaotic, unstable, nonlinear dynamics Relevant to planet, star, black hole, and galaxy formation Initial Down Down
Numerlcal. SOIVerS (llke A.thena-l-.-l-) are . Density X Velocity Y Velocity Z \elocity Pressure condition & sample _sample. 3 Better spectrum than Athena at 323 and 643 /
computationally expensive at high resolution, and Quantitative - Qualitative R . TR 2 training | 1283 | e 52
very inaccurate at low resolution.

data | | &
Athena++ Model Model
at 323 at 323 at 323
- Domain-general, fully-learned convolutional

. . : Frequenc
models for simulation 2D Incompressible Turbulence 3D Mixing Layer Turbulence with Radiative Cooling 4 -
. . . Describes atmospheric flows on planets Captures cooling during galaxy formation
- Same architecture can learn to predict different ; .
types of turbulence D P P AT R i AP b )
- Comparisons to coarsened numerical solver In . . . !

terms of spatial and temporal resolution,
numerical stablility, and generalization
total momentum L ~
We train a general-purpose model to learn the transition function between pairs of states Stabilit / (should stay at 0) W x Does not generalize to more developed turbulence
for 1D, 2D, or 3D grids. At test time, we apply the model multiple times from an initial state. y

- Question: To what extent can learned models
supplement or replace traditional simulators for
astrophysics?
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Training without noise does not preserve constraints different StateS

Training with noise helps...sometimes..
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1D KS Generalization to longer trajectories:

I I I I Constraint preservation Generalization to

Generalization to different initial conditions:
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Unlike the ground truth solver, the learned model is x 10 The model requires training on muIt|p!e those seen during training, the model trained on
o o . box sizes to be able to produce plausible : : .
not very sensitive to the specific integration 100 - . . _ multiple box sizes does not predict the expected
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dCNN block: stack of 7 dilated CNNs to gradually increase and decrease perceptual range. o Up to 1000x faster than Athena at 128 Model 128° s 393 ~20-30 multiple box - : o iength (L). ;
Our model uses N=4 of these stacks. Model 128% — 323 (GPU) | ~1 sizes




