
Iterative inferencing strategy

Introduction

Solutions to Partial Differential Equations (PDEs) depend on PDE

conditions such as geometry of computational domain, boundary conditions

and source terms. Many existing approaches in machine learning use direct

inferencing to predict PDE solutions given a representation of the

conditions. The PDE conditions can be sparse and high dimensional and

cause generalization problems in ML approaches. Moreover, a direct

inferencing approach is not flexible and does not allow solution initialization

or correction of solution trajectory. The ML-based hybrid solver presented

here uses lower dimensional representations of PDE conditions and

combines it with iterative inferencing procedures to improve generalizability.

Fig. 2 shows the hybrid latent space solver methodology proposed in this work

for using the Autoencoder networks to infer at unknown and unseen conditions.

Given a coarse solution, the latent vectors (𝜂) are obtained using the encoder

network. Similarly, latent vectors are also obtained for the PDE conditions

(𝜂𝑔, 𝜂ℎ). The latent space solver uses the trained encoder-decoder networks to

iteratively to update the PDE solution latent vector and at convergence,

decodes the converged PDE solutions

Latent space solver

Latent space representation of PDE solutions and PDE

conditions

Fig. 1 shows the neural network architectures used to determine the

compressed latent space vectors of the various PDE conditions, such as

geometry of computational domain, BCs and source term distributions, and

PDE solutions (u1 and u2). The PDE conditions, as well as the PDE

solutions are compressed into their lower dimensional latent vectors, 𝜂𝑔, 𝜂ℎ,

𝜂𝑏, 𝜂, using CNN encoder-decoder type networks.
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Fig. 1: Autoencoders for PDE solutions and PDE conditions

Fig. 2: Latent space solver: iterative inferencing strategy

Experiments

Case setup and training

Fig. 4: Computational domain and power source distribution example

Computational domain Power source distributions

Unseen power source distribution: case 1

Fig. 5: Contour Plot comparisons of ML-Solver vs Ansys Fluent for case 1 along plane YZ

Unseen power source distribution: case 2

Fig. 7: Contour Plot comparisons of ML-Solver vs Ansys Fluent for case 2 along plane YZ

Fig. 6: Line Plot comparisons of ML-Solver vs Ansys Fluent for case 2 along line Y

Fig. 8: Line Plot comparisons of ML-Solver vs Ansys Fluent for case 2 along line Y

Advantages
• The iterative procedure used for inferencing allows PDE solution initialization

and alteration of solution trajectory during iterations using existing PDE solvers

• The PDE solution is conditioned by dense, lower dimensional representations

of PDE conditions, thus enhancing the generalizability.

The hybrid solver is demonstrated for a 3-D, steady-state electronic cooling case

with natural convection shown in Fig. 4. There are 5 solution variables, 3

components of velocity, pressure and temperature. The chip is electronically

heated using a power source with random spatial distributions (example in Fig. 4).

The chip heating results in two-way coupling of physics.

The training data for the autoencoders consists of PDE solutions from 200 spatial

distributions of power source but generalizes to a wider range of power source

distributions (examples in Fig. 5-8).

Fig. 3: Two-way physics coupling
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