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The dynamics of physical systems is often constrained to lower dimensional
sub-spaces due to the presence of conserved quantities. Here we propose a
method to learn and exploit such symmetry constraints building upon
Hamiltonian Neural Networks. By enforcing cyclic coordinates with appropriate
loss functions, we find that we can achieve improved accuracy on simple
classical dynamics tasks. By fitting analytic formulae to the latent variables in
our network we recover that our networks are utilizing conserved quantities

such as (angular) momentum.

Main idea: using and exploiting conserved
quantities to constrain motion of particles

Scheme: Predicting motion of particles using physical bias (HNN and
additional conserved quantities)

Motion governed by Hamiltonian

Hamiltonian Neural Network restricts motions to hyperplanes (in phase
space) of constant energy

Additional constraints due to other (unknown) conserved quantities (e.g.
angular momentum)

Using constraints from conserved quantities to improve the Hamiltonian
Side effect: reveal symmetries (see also [Krippendorf, Syvari 2020])

Theory of SCNN

Hamiltonian Neural Network approach [Greydanus et al. 2019]: learn

motion of particles by learning Hamiltonian; using Hamiltonian equations to

compute time evolution (physics bias):
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Problem: Rather unstable after longer time period, fails to conserve
conserved quantities

Solution: additional physics bias, use coordinate transformation to
generalized coordinates (P, Q)

T, : (a.p) ~ (Q(q,p). P(q,p))
Z 40,9 = Z 4(P(p,q), Q(p, q))

Tw network for coordinate transformation, ?/4) for Hamiltonian

Tw can be flexible (learning conserved quantities) or known conserved

quantities can be enforced)

How do additional constraints on the Hamiltonian arise from this bias?

Conservation of generalized momenta, constrains the structure of the
Hamiltonian
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Different coordinates have to satisfy Poisson algebra

{0, P} =0; {0, 0} ={P,P;} =0
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Architecture of the neural network

« Both neural networks consists of two hidden layer with 200 neurons each and tanh-activation
« Adam optimizer with learning rate of 107>,

Experiments

Does SCNN with and without domain knowledge perform better than HNN?

1) SCNN (k): SCNN with k constrained generalized coordinates
2) SCNN_constraint (k): SCNN with k known conserved quantities
(using domain knowledge)

How good are the trajectories?

Networks with varying number of conserved quantities
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Increased performance of SCNN also on further physical systems: charged particle in
magnetic field, spherical pendulum and double pendulum

Experiment SCNN SCNN-constraint HNN

Magnetic field 0.164 £ 0.025 0.033 £0.010 0.083 +=0.019
Spherical pendulum | 0.092 £+ 0.33 0.055 + 0.005 0.288 £ 0.007
Double pendulum 0.014 + 0.004 — 0.117 £ 0.012
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Neural Network and loss components

 Hamiltonian loss:

N-d

3HNN=Z
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» Poisson algebra loss:

n-d n-d
L poisson = Z ” {Qi,PJ-} — 5ij ” 2+ Z ” {Pian} || 2+ ” {0 Q]} ” ,

i,j=1 I,j>1

 Loss on cyclic coordinates:
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 Additional loss components force the neural network to find conserved
guantities and use them to constrain Hamiltonian
« Complexity: Inference is comparable to HNN

Analytical formulae for conserved quantities

« Fitting of generalized coordinates (and specially conserved quantities)
possible

« Improvement in prediction precision and computing efficiency
« Conserved quantities in the gravitional two body system (example):

Pc1 = _4‘2PX1_4'2PX2_ 1'3p)’1 - 1°3py2 ’
Pc2: _O'9px1 _0'9pX2_3'2py1 _3'2p)’2’
L= 1.0 4y Dy, + 0.9 4y Py, + 0.9 Gy, Py, — 1.0 dy,Py,
+1.0 ¢, p,, —09 g, p,, —0.9 ¢, p, +1.0 g, p,.

Outlook and related work

* In the domain of the work of [Battaglia et al.]

« As for HNN, natural extensions to Graph Neural Network [Sanchez-
Gonzalez et al., 2019] and in flows [Toth et al., 2019]

 Applications within molecular dynamics and astrophysical simulations
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