
Neural Network and loss components 
• Hamiltonian loss:  

              

• Poisson algebra loss: 

              

• Loss on cyclic coordinates: 

              

• Additional loss components force the neural network to find conserved 
quantities and use them to constrain Hamiltonian 

• Complexity: Inference is comparable to HNN
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Improving Simulations with Symmetry Control Neural Networks

Outlook and related work 
• In the domain of the work of [Battaglia et al.] 
• As for HNN, natural extensions to Graph Neural Network [Sanchez-

Gonzalez et al., 2019] and in flows [Toth et al., 2019] 
• Applications within molecular dynamics and astrophysical simulations 
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Theory of SCNN 
• Hamiltonian Neural Network approach [Greydanus et al. 2019]: learn 

motion of particles by learning Hamiltonian; using Hamiltonian equations to 
compute time evolution (physics bias): 

                     ,               

• Problem: Rather unstable after longer time period, fails to conserve 
conserved quantities  

• Solution: additional physics bias, use coordinate transformation to 
generalized coordinates  

                                         

                     

      network for coordinate transformation,  for Hamiltonian 

•  can be flexible (learning conserved quantities) or known conserved 

quantities can be enforced) 

How do additional constraints on the Hamiltonian arise from this bias? 
• Conservation of generalized momenta, constrains the structure of the 

Hamiltonian 

                               

• Different coordinates have to satisfy Poisson algebra 
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• • Learning Symmetries

Training the neural network
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Experiments 
Does SCNN with and without domain knowledge perform better than HNN? 

1) SCNN (k): SCNN with k constrained generalized coordinates 
2) SCNN_constraint (k): SCNN with k known conserved quantities 

(using domain knowledge) 

Increased performance of SCNN also on further physical systems: charged particle in 
magnetic field, spherical pendulum and double pendulum

Analytical formulae for conserved quantities 
• Fitting of generalized coordinates (and specially conserved quantities) 

possible 

• Improvement in prediction precision and computing efficiency  
• Conserved quantities in the gravitional two body system (example): 
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Architecture of the neural network 
• Both neural networks consists of two hidden layer with 200 neurons each and tanh-activation 
• Adam optimizer with learning rate of .10−3

The dynamics of physical systems is often constrained to lower dimensional 
sub-spaces due to the presence of conserved quantities. Here we propose a 
method to learn and exploit such symmetry constraints building upon 
Hamiltonian Neural Networks. By enforcing cyclic coordinates with appropriate 
loss functions, we find that we can achieve improved accuracy on simple 
classical dynamics tasks. By fitting analytic formulae to the latent variables in 
our network we recover that our networks are utilizing conserved quantities 
such as (angular) momentum. 

• Scheme: Predicting motion of particles using physical bias (HNN and 
additional conserved quantities) 

• Motion governed by Hamiltonian 
• Hamiltonian Neural Network restricts motions to hyperplanes (in phase 

space) of constant energy  
• Additional constraints due to other (unknown) conserved quantities (e.g. 

angular momentum) 
• Using constraints from conserved quantities to improve the Hamiltonian 
• Side effect: reveal symmetries (see also [Krippendorf, Syväri 2020])

Main idea: using and exploiting conserved 
quantities to constrain motion of particles

HNNGround truth Sample trajectories 
Gravitational 2-body

SCNN
(our work)

How good are the trajectories? 
Networks with varying number of conserved quantities

How well is angular momentum conserved?

What is the dependence on the additional 
loss components? 
  relative strength 
 of loss factors
α

Gravitational 2-body Springlike interactions

How well is energy conserved?
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Experiment SCNN SCNN-constraint HNN

Magnetic field 0.164± 0.025 0.033± 0.010 0.083± 0.019

Spherical pendulum 0.092± 0.33 0.055± 0.005 0.288± 0.007

Double pendulum 0.014± 0.004 – 0.117± 0.012

Table 1: The MSE after 100 time steps for di↵erent experiments. For the double pendulum
we compare the MSE after 20 time steps. The data points are collected for 10 di↵erent
initalizations and the error bars correspond to single standard deviation. All SCNN net-
works in these experiments have two conserved quantities. The best performing approach
is highlighted.

to HNN is confirmed. Table 1 shows the mean-squared error predictions which we obtain
after 100 timesteps. A description of these systems can be found in Appendix A.

Search for conserved quantities

The conserved quantities of our SCNN networks can be analysed by fitting a low-dimensional
polynomial ansatz to the respective network predictions. This reveals that our SCNN finds
the angular momentum and the total momentum as conserved quantities in the gravitational
two-body system:

Pc1 =� 4.2 px1 � 4.2 px2 � 1.3 py1 � 1.3 py2 ,

Pc2 =� 0.9 px1 � 0.9 px2 � 3.2 py1 � 3.2 py2 ,

L = 1.0 qx1py1 + 0.9 qx1py2 + 0.9 qx2py1 � 1.0 qx2py2

+ 1.0 qy1px1 � 0.9 qy1px2 � 0.9 qy2px1 + 1.0 qy2px2 .

(9)

For more sophisticated conserved quantities (i.e. non-polynomial conserved quantities) dif-
ferent ansätze seem necessary (some of which are pursued in related work (Sahoo et al.,
2018; Cranmer et al., 2019; Wetzel et al., 2020).

4 Outlook and related work

Our SCNNs naturally connect with work on inferring dynamics with neural networks such
as (Battaglia et al., 2016) in the same way as HNNs. Natural extensions of our current work
can include the application on graph neural network based approaches (Sanchez-Gonzalez
et al., 2019) and in flows (Toth et al., 2020). With respect to applications, we particu-
larly look forward to applying our new approach for automatically inferring and using the
symmetries in astrophysical and molecular dynamics settings.
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