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Abstract

e Discovering governing equations of a physical system. rep-
resented by partial differential equations (PDESs), from data
15 a central challenge.

e Current methods require either some prior knowledge (e.g.,
candidate PDE terms) to discover the PDE form, or a large
dataset to learn a surrogate model of the PDE solution op-
erator.

e \WWe propose the first learning method that only needs one
PDE solution, i.e., one-shot learning.

e We first decompose the entire computational domain into
small domains, where we learn a local solution operator, and
then find the coupled solution via a fixed-point iteration.

Problem setup: Learning solution
operators of PDEs

Consider a physical system governed by a PDE defined on a
spatio-temporal domain 2 C R

Flu(x); f(x)] =0, . Zq) € Q)
with suitable initial and boundary conditions. We define the
solution operator as

X = (21, To, . .

G f(x)— u(x).
Dataset: 7 = {(f;, uz)}g, and ( f;,u;) is the ¢-th data point,
where u; = G( f;) is the PDE solution for f;.
Goal: Learn G from 7T, such that for a new f, we can predict
the corresponding solution v = G(f).
Extreme difficult scenario: We have only one data point
for training, i.e., one-shot learning with |7| = 1, and we let
T =A{(fr ur)}.

e Assume we can select f7:

e We only predict f in a neighborhood of some f;, where we
know the solution uy = G(fy).

for solution operators of

\Nsys

Massachusetts Institute of Technology; Ansys Inc.

Email: lu lu@mit.edu

Methods: One-shot learning based Demonstration examples: Nonlin-
on locality ear diffusion-reaction equation

@ B Dé}’zu

> Py ku”+ f(x), x€]l0,1],t€[0,1],

" with zero IC/BC. D = 0.01 and k = 0.01.
" Training data for the diffusion-reaction equation:

Idea: Consider that derivatives and .
PDEs are defined locally, 1.e., the same
PDE is satisfied in an arbitrary small AR A S
domain inside 2. We partition the SRS
entire domain () into many small do- L
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then u(x*) is determined by the PDE. We use a neural network
to represent this relationship

G:{u(x):x €} U{f(x):x€Q}— u(x).

Local domains ) of the diffusion-reaction equation:

Training dataset: A IR B IR
e “Large”: By traversing (1 for all small local domains, we can J - 'k' 'f' '7?' - j - "I" - t' -
generate many input-output pairs for training. j—1---- _S#’_ S j—1- _‘_. - - -

e “Diverse”: We choose f+ to be uniform random between -1 ! ! ! ! ! !
(—1 1 1+1 i—1 1 1+1

and 1 on each mesh node, i.e., f7(x) is sampled from U(—1,1).

Prediction via a fixed-point iteration.

For a new f = fy+ Af, we use uy as the initial guess of w,
and then in each iteration, we apply the trained network on the
current solution as the input to get a new solution.

[nitiate: u(x) < up(x) for all x € )
while u has not converged do
for x € () do

4(x) < G(the inputs of u and f in Q)

Prediction: We randomly sample Af from a Gaussian ran-
dom field (GRF): Af ~ GP(0, k(x1,x5)), where the covariance
kernel i1s k(xl, 32’2) — 0'2 exp(—Hxl — 332“2/2[2)
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