

Learning exchange-correlation functional with differentiable density functional theory

We wrote a 3D fully differentiable density functional theory (DFT) simulation and use it to improve simulation accuracy

Motivations

- Accurate simulations of molecular/material properties are keys in advancing novel material discovery.
- One of the most widely used quantum chemistry simulations, DFT, is accurate enough for some cases, but insufficient for some modern use cases.
- Can we use machine learning to improve the accuracy of DFT using **limited experimental data**?

Observations

- DFT accuracy depends largely on the exchangecorrelation (xc) functional.
- Xc functional takes electron density, $n(\mathbf{r})$, as its input, and the energy as its output, i.e. $E_{xc}[n(\mathbf{r})]$.
- Improving xc functional also improves the DFT accuracy.

Problems

- There is no direct experimental data on xc functionals (only on molecular/material properties).
- Experimental data on molecular properties are limited and heterogeneous.

Ideas

- Use a neural network to represent the xc functional (XCNN).
- Wrap the XCNN with a **fully-differentiable DFT** to enable learning from molecular properties.

Repeat the procedures until self-consistency (or equilibrium) achieved.

Muhammad F. Kasim Sam M. Vinko

_		
	\searrow	
	Ť	

muhammad.kasim@physics.ox.ac.uk sam.vinko@physics.ox.ac.uk

Molecule description Neural network v_{xc} **Build Fock matrix** v_{xc} components Grid integration Solve KS equation (eigendecomposition) ε_i , \mathbf{c}_i Self-consistent iterations nCalculate density Calculate other i 🐨 Neural network E_{xc} energy

Schematics of the differentiable DFT

Basic DFT procedures Construct the Hamiltonian matrix components by evaluating the **Gaussian** integrals using libcint library (Sun, 2014).

Perform eigendecomposition on the Hamiltonian matrix.

How it's made differentiable

- Wrap libcint with PyTorch. The gradient expressions are easily derived.
- For non-degenerate case, it is available on PyTorch. For degenerate case, we **follow** Kasim (2020) for numerical stability.
- Use **implicit theorem** to calculate the gradient.

Training data

Test data

- \bullet

Calcula Local I LDA (I XCNN XCNN Genera PBE (F XCNN XCNN Other a SCAN CCSD CCSD-

Conclusions

learning

ICLR 2021 Workshop Deep Learning for Simulation (simDL)

• Has only 12 experimental data + 15 simulated data for regularization.

Consists of molecules with 1 – 2 atoms only.

Only contains H – Ne atoms.

Туре	Atomization energy	Density profile	Ionization potential
Training	H_2 , LiH, O_2 , CO	${f H, { m Li}, { m Ne}, { m H}_2,}\ { m Li}_2, { m Li}{ m H, { m B}_2,}\ { m O}_2, { m CO}$	O, Ne
Validation	N_2 , NO, F_2 , HF	$\begin{array}{c} \mathrm{He,\ Be,\ N,\ N_2,}\\ \mathrm{F_2,\ HF} \end{array}$	N, F

Ionization potential (IP) on 18 atoms (H – Ar).

Atomization energy on 104 molecules:

• HC: Hydrocarbons (up to **14 atoms** in a molecule)

• SHC: Substituted hydrocarbons

• NHC-1: Non-hydrocarbons with only H – Ne atoms

• NHC-2: Non-hydrocarbons containing Na – Ar atoms

Error on molecular properties predictions

							_			
ation	IP	AE	AE HC	AE SHC	AE NHC-1	AE NHC-2	-			
Density Approximations (LDA)										
Perdew & Wang, 1992)	6.9	70.4	97.0	101.1	58.8	43.7				
-LDA	50.8	15.3	22.7	19.4	7.8	16.6				
-LDA-IP	15.2	18.5	25.4	21.8	8.4	22.9				
lized gradient approximations (GGA)										
Perdew et al., 1996)	3.6	16.5	15.1	23.2	18.0	9.8				
-PBE	10.7	7.4	5.4	8.4	6.5	8.5				
-PBE-IP	4.1	8.1	6.8	9.6	6.7	8.6				
<i>upproximations</i>										
(Sun et al., 2015)	3.7	5.2	3.8	8.2	4.0	4.6				
(basis: cc-pvqz)	2.0	12.1	11.1	17.7	11.2	9.0				
T (basis: cc-pvqz)	1.3	3.5	2.2	5.6	2.5	3.5				

 XCNN improves the predictions on larger molecules and molecules with atoms not present in the training.

• This paves a new way to improve DFT accuracy with machine