
Conclusions

• XCNN improves the predictions on larger molecules and 

molecules with atoms not present in the training.

• This paves a new way to improve DFT accuracy with machine 

learning

Learning exchange-correlation functional with 

differentiable density functional theory

We wrote a 3D fully differentiable density 

functional theory (DFT) simulation and use it 

to improve simulation accuracy

Motivations

• Accurate simulations of molecular/material properties 

are keys in advancing novel material discovery.

• One of the most widely used quantum chemistry 

simulations, DFT, is accurate enough for some cases, 

but insufficient for some modern use cases.

• Can we use machine learning to improve the accuracy

of DFT using limited experimental data?

Observations

• DFT accuracy depends largely on the exchange-

correlation (xc) functional.

• Xc functional takes electron density, 𝑛(𝐫), as its input, 

and the energy as its output, i.e. 𝐸𝑥𝑐 𝑛 𝐫 .

• Improving xc functional also improves the DFT 

accuracy.

Problems

• There is no direct experimental data on xc functionals 

(only on molecular/material properties).

• Experimental data on molecular properties are 

limited and heterogeneous.

Ideas

• Use a neural network to represent the xc functional 

(XCNN).

• Wrap the XCNN with a fully-differentiable DFT to 

enable learning from molecular properties.

Basic DFT procedures
• Construct the Hamiltonian 

matrix components by 

evaluating the Gaussian 

integrals using libcint

library (Sun, 2014).

• Perform eigen-

decomposition on the

Hamiltonian matrix.

• Repeat the procedures until 

self-consistency (or 

equilibrium) achieved. References Qiming Sun (2014), arxiv: 1412.0649 
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Schematics of the differentiable DFT

How it’s made differentiable
• Wrap libcint with PyTorch. The 

gradient expressions are easily 

derived.

• For non-degenerate case, it is 

available on PyTorch. For

degenerate case, we follow 

Kasim (2020) for numerical 

stability.

• Use implicit theorem to 

calculate the gradient.

Training data

• Has only 12 experimental data + 15 simulated data for 

regularization.

• Consists of molecules with 1 – 2 atoms only.

• Only contains H – Ne atoms.

Test data

• Ionization potential (IP) on 18 atoms (H – Ar).

• Atomization energy on 104 molecules:

• HC: Hydrocarbons (up to 14 atoms in a molecule)

• SHC: Substituted hydrocarbons

• NHC-1: Non-hydrocarbons with only H – Ne atoms

• NHC-2: Non-hydrocarbons containing Na – Ar atoms

Error on molecular properties predictions


