Meta-learning using privileged information for dynamics

Code: github.com/bjd39/lupi-ndp

training time

test time

NDP path

Predictions in observation space

Ben Day, Alexander Norcliffe, Jacob Moss, Pietro Liò

Department of Computer Science and Technology, University of Cambridge, Cambridge, UK.

twitter: @itsmebenday, @alexnorcliffe98, @MossJacob, @pl219_Cambridge

parametrise

 $z \sim N(\mu, \sigma)$

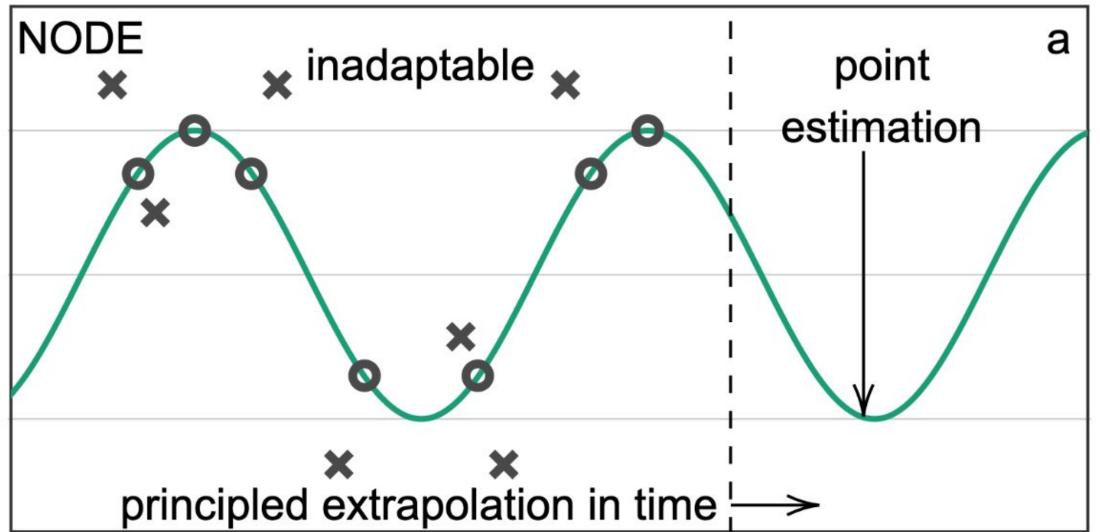
 $z_C z_{(\pi,T)}$

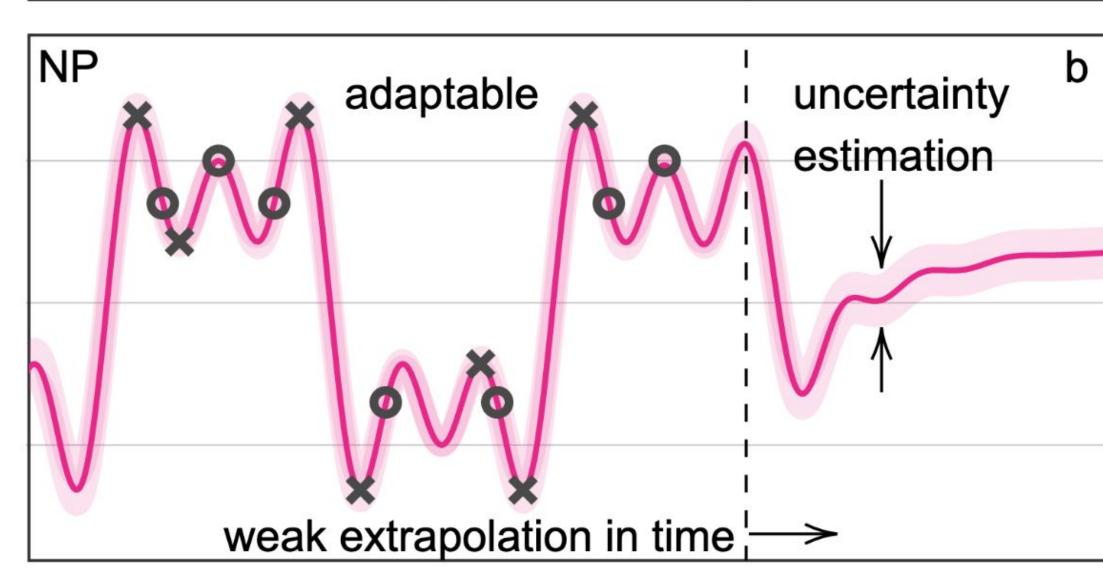
ODE and

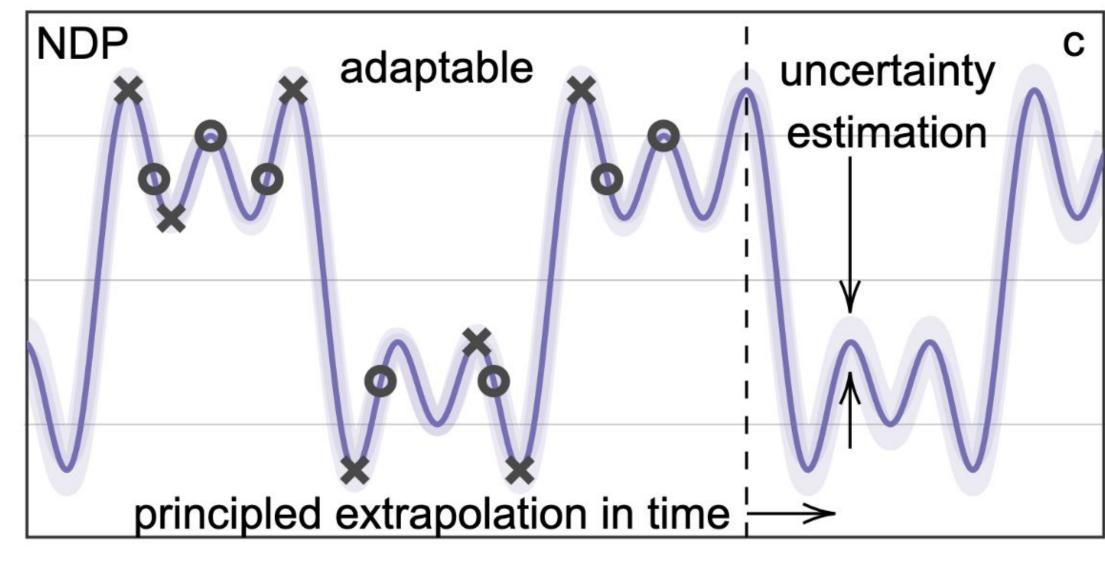
decoder

Correspondence to Ben: bjd39@cam.ac.uk

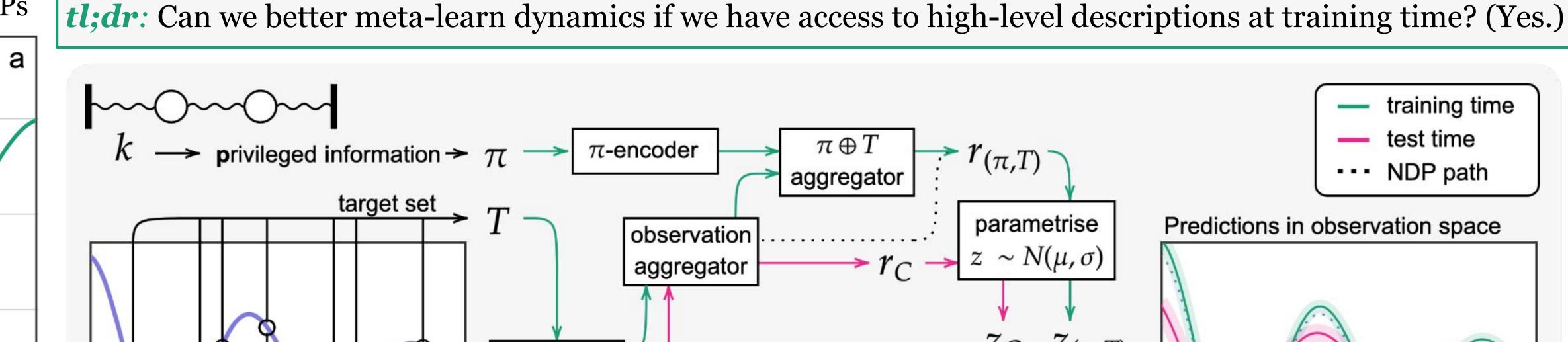
Background: Neural ODEs (NODE), NPs, and NDPs







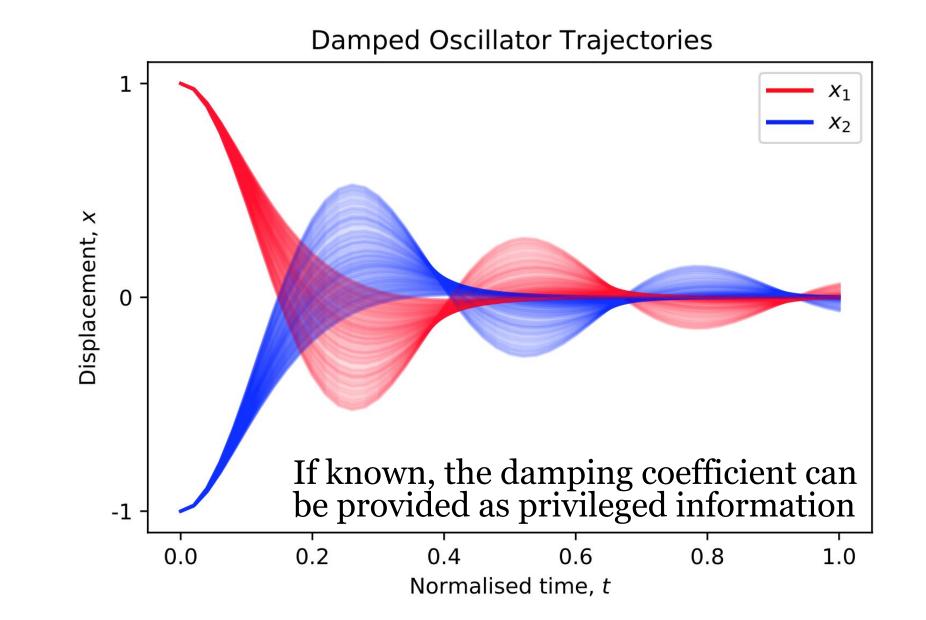
• training observations; × test time additional context



observation

encoder

- 1. Neural ODE Processes (NDP) approach meta-learning dynamics with a latent variable model, and inherit a flexible context aggregation mechanism from the Neural Process (NP): arbitrarily sized sets of observations are aggregated into a fixed length representation. 2. In the sciences, we often have access to high-level information in addition to observations (e.g. known conserved quantities) this is privileged information.
 - → Taking advantage of the aggregation flexibility, we extend NDPs to use additional information within the Learning Using Privileged Information (LUPI) setting (training only) and find general improvements.



context set

	Varying stiffness, $k \sim U(0.2, 1)$			Varying damping, $c \sim U(0.5, 2)$		
Model	MSE ↓	Calib. error ↓	Sharp. \downarrow	MSE ↓	Calib. error ↓	Sharp. ↓
NoPI LUPI	1.05 ± 0.05 0.93 ± 0.04	0.51 ± 0.02 0.47 ± 0.02	6.88 6.57	2.82 ± 0.29 2.39 ± 0.09	0.84 ± 0.04 0.37 ± 0.02	2.15 4.71
NoPI* LUPI*	0.16 ± 0.02 0.06 ± 0.01	2.69 ± 0.02 0.91 ± 0.02	1.00 1.10	$\begin{vmatrix} 0.56 \pm 0.02 \\ 0.25 \pm 0.01 \end{vmatrix}$	1.56 ± 0.03 0.73 ± 0.03	0.93 1.18

	L-V, $u_0 \sim U(0.2, 1), v_0 \sim U(0.1, 0.5)$						
Model	$MSE \downarrow$	Calib. error ↓	Sharp. \downarrow				
NoPI	6.44 ± 0.44	2.19 ± 0.05	2.23				
LUPI	$\textbf{1.82} \pm \textbf{0.13}$	$\textbf{0.90} \pm \textbf{0.04}$	3.44				
NoPI*	5.24 ± 0.30	2.89 ± 0.04	1.37				
LUPI*	$\textbf{0.73} \pm \textbf{0.02}$	$\textbf{1.23} \pm \textbf{0.04}$	1.48				

* indicates 'training mode' i.e. additional observations and privileged information provided