Meta-learning using privileged information for dynamics Code: github.com/bjd39/lupi-ndp training time test time NDP path Predictions in observation space ## Ben Day, Alexander Norcliffe, Jacob Moss, Pietro Liò Department of Computer Science and Technology, University of Cambridge, Cambridge, UK. twitter: @itsmebenday, @alexnorcliffe98, @MossJacob, @pl219_Cambridge parametrise $z \sim N(\mu, \sigma)$ $z_C z_{(\pi,T)}$ ODE and decoder Correspondence to Ben: bjd39@cam.ac.uk **Background**: Neural ODEs (NODE), NPs, and NDPs • training observations; × test time additional context observation encoder - 1. Neural ODE Processes (NDP) approach meta-learning dynamics with a latent variable model, and inherit a flexible context aggregation mechanism from the Neural Process (NP): arbitrarily sized sets of observations are aggregated into a fixed length representation. 2. In the sciences, we often have access to high-level information in addition to observations (e.g. known conserved quantities) this is privileged information. - → Taking advantage of the aggregation flexibility, we extend NDPs to use additional information within the Learning Using Privileged Information (LUPI) setting (training only) and find general improvements. context set | | Varying stiffness, $k \sim U(0.2, 1)$ | | | Varying damping, $c \sim U(0.5, 2)$ | | | |----------------|---------------------------------------|---------------------------------|---------------------|--|---------------------------------|--------------| | Model | MSE ↓ | Calib. error ↓ | Sharp. \downarrow | MSE ↓ | Calib. error ↓ | Sharp. ↓ | | NoPI
LUPI | 1.05 ± 0.05 0.93 ± 0.04 | 0.51 ± 0.02 0.47 ± 0.02 | 6.88
6.57 | 2.82 ± 0.29
2.39 ± 0.09 | 0.84 ± 0.04 0.37 ± 0.02 | 2.15
4.71 | | NoPI*
LUPI* | 0.16 ± 0.02
0.06 ± 0.01 | 2.69 ± 0.02 0.91 ± 0.02 | 1.00
1.10 | $\begin{vmatrix} 0.56 \pm 0.02 \\ 0.25 \pm 0.01 \end{vmatrix}$ | 1.56 ± 0.03 0.73 ± 0.03 | 0.93
1.18 | | | L-V, $u_0 \sim U(0.2, 1), v_0 \sim U(0.1, 0.5)$ | | | | | | | |-------|---|-----------------------------------|---------------------|--|--|--|--| | Model | $MSE \downarrow$ | Calib. error ↓ | Sharp. \downarrow | | | | | | NoPI | 6.44 ± 0.44 | 2.19 ± 0.05 | 2.23 | | | | | | LUPI | $\textbf{1.82} \pm \textbf{0.13}$ | $\textbf{0.90} \pm \textbf{0.04}$ | 3.44 | | | | | | NoPI* | 5.24 ± 0.30 | 2.89 ± 0.04 | 1.37 | | | | | | LUPI* | $\textbf{0.73} \pm \textbf{0.02}$ | $\textbf{1.23} \pm \textbf{0.04}$ | 1.48 | | | | | * indicates 'training mode' i.e. additional observations and privileged information provided