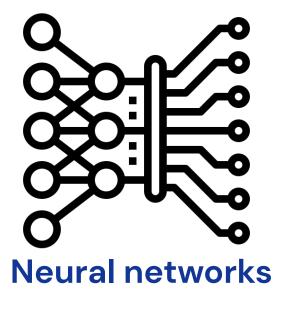
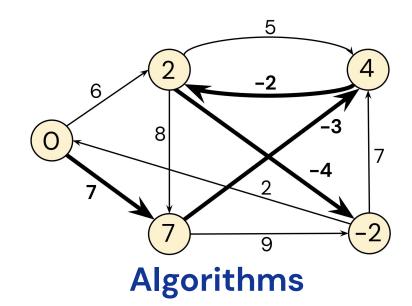


Heiko Strathmann, Mohammadamin Barekatain, Charles Blundell, Petar Veličković

Algorithmic Reasoning with GNNs



- + Operate on **raw** inputs
- + Generalise on **noisy** conditions
- + Models **reusable** across tasks
- Require **big data**
- Unreliable when **extrapolating**
- Lack of interpretability



- Trivially **strongly** generalise
- **Compositional** (subroutines)
- Guaranteed correctness
- + Interpretable operations
- Inputs must match **spec**
- Not **robust** to task variations

Non-Markovian Inputs

GNNs typically overwrite their internal states in every step

- Previous applications: only latest version of the data relevant
- Here: queries require knowledge of previous versions of the data
- This places significant "pressure" on internal states

Current GNNs cannot explicitly memorize their past states

Persistent Message Passing

Idea: endow GNNs with an explicit, <u>persistent</u>, memory

- Instead of overwriting nodes -> persisting nodes
- Paired with an efficient relevance / query mechanism
- Effectively an **episodic memory** of past computation

Strong performance on non-Markovian tasks

DeepMind

Persistent Message Passing

Input Encoding

Initial connectivity

 $\mathbf{\Pi}^{(0)} = \mathbf{\Pi}$

 $\mathbf{\Lambda}^{(0)} = \mathbf{I}$

Messages

Next-step candidates

Node representations

$$\begin{split} \boldsymbol{v}_{j}^{(t)} &= f_{\text{relevance}}\left(\texttt{time_stamp}(j), t, \boldsymbol{h}_{j}^{(t-1)}\right) \\ \boldsymbol{z}_{j}^{(t)} &= f_{\text{operation}}\left(\texttt{expand}(E^{(t)}, s^{(t)}), \boldsymbol{h}_{j}^{(t-1)}\right) \end{split}$$

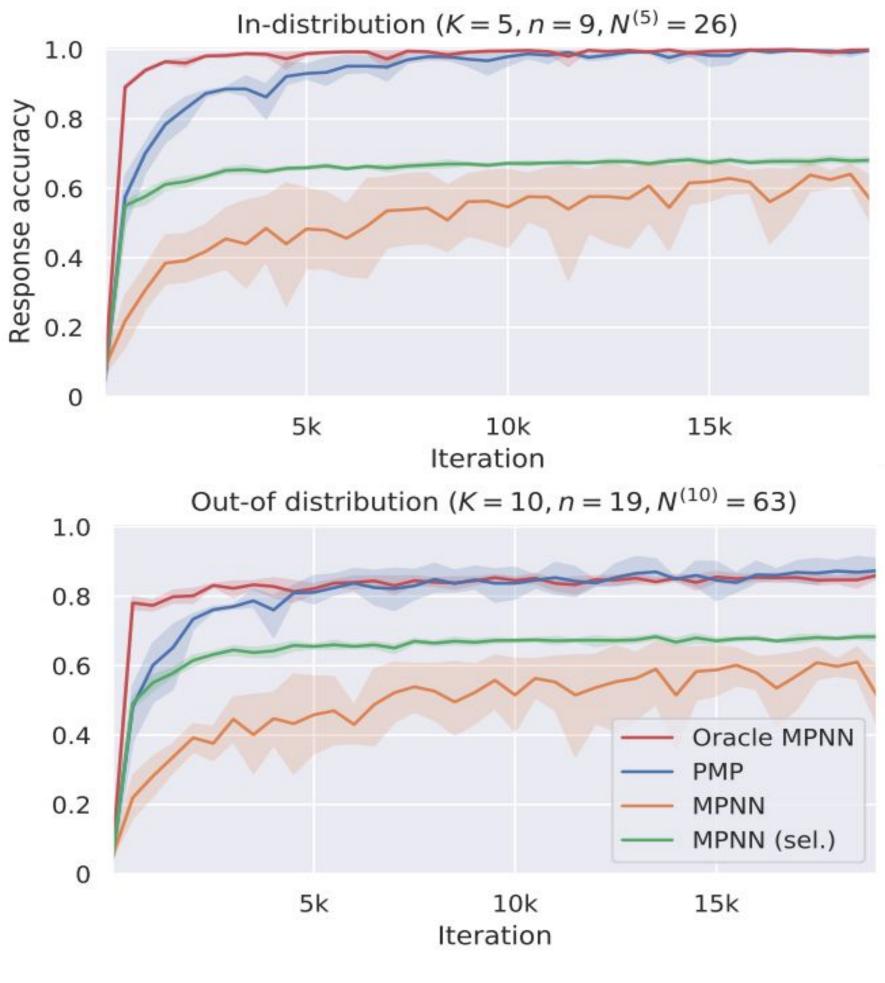
Task: Dynamic Range Minimum Queries

Compute (historic) minimum across ranges in continuously updated array

Solved by Segment Trees

- O(log n) query time • Leaf nodes store array • Intermediate nodes store
- minimum of children

Results

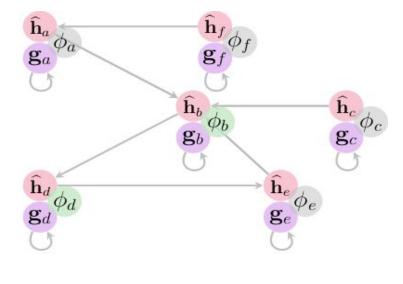


Masking

Relevance latents

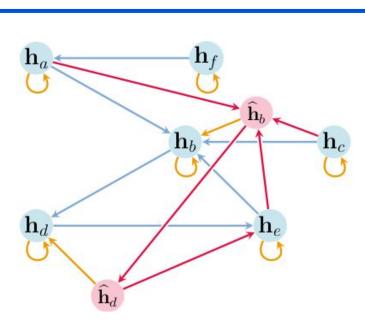
$$\mu_j^{(t)} = \psi_{\text{relevance}}(\boldsymbol{g}_j^{(t)}) \in \{0, 1\}$$

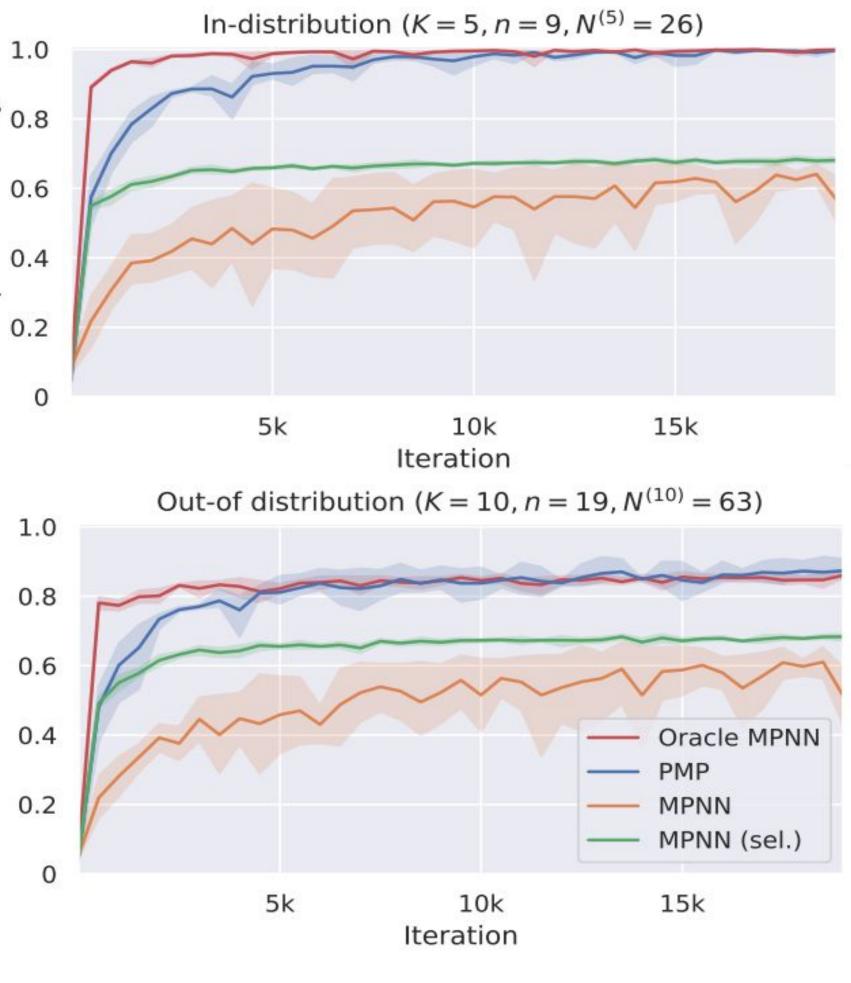
$$\phi_j^{(t)} = \psi_{\text{persistency}}(\widehat{\boldsymbol{h}}_j^{(t)} \cdot \mu_j^{(t)}) \in \{0, 1\}$$

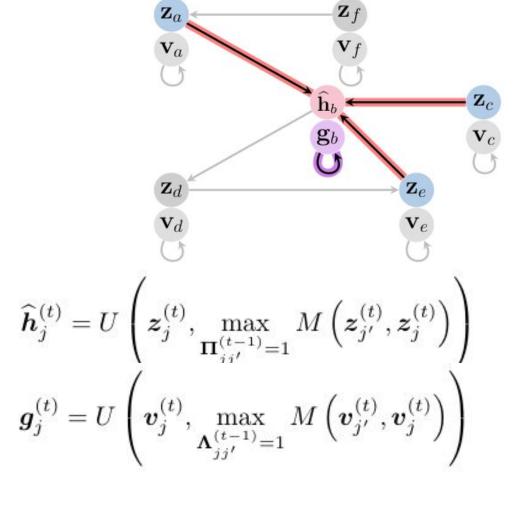


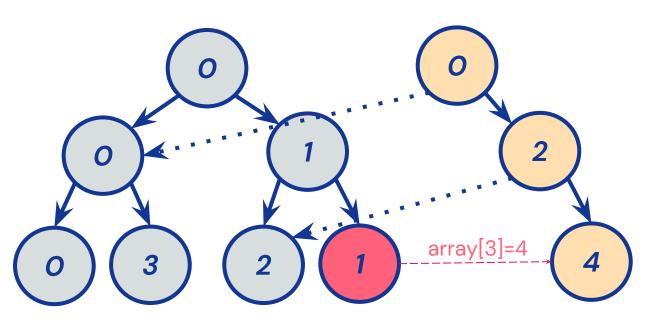
Persistency

- "Persist" selected nodes
- Original nodes untouched
- Track connectivity









PMP generalizes out-of-distribution to 2x larger test inputs Significantly outperforms GNNs which overwrite states

• Supervised on response (binary encoding), ground-truth masks, and node-values

https://arxiv.org/abs/2103.01043