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ABSTRACT

The demand for emulators of expensive computational models is rapidly surging,
as search, optimization, and uncertainty quantification tasks become increasingly
more relevant than the computation of single simulation configurations. Along
with traditional methods that explore a model’s configuration space efficiently and
accurately, relatively more recent AI algorithms have started to play a role in the
construction of simulation emulators. In particular, Auto-Encoder networks have
been deployed in a variety of domains, as they not only can ingest simulation data
and enable the fast evaluation of specific observables, but also provide a degree
of transparency into the evaluation process and relate the predicted values to the
model’s configuration variables through simple, low-dimensional representations.
We apply a recent proposal, based on a modified Variational Auto-Encoder (VAE)
architecture, to a 2D coastal inundation model based on the Boussinesq equation,
and evaluate its ability to learn the relationship between the model controls and
the observed water levels at a predefined location. We also propose two routes to
use this representation as the central component of an emulator, and assess their
respective viability.

1 INTRODUCTION

A computational model is effectively a map between a configuration space, spanned by parameters
such as the model’s initial conditions, domain geometry, or physical parameters, and an observable
space, consisting of the variables of interest which the model aims to compute. The map can be com-
plex and computationally expensive, so that in practice only a limited portion of the configuration
space can be probed, and inverting the map is rarely tractable in practice.

There is, however, hope for improvement: whilst the dimensionality and coordinates of the config-
uration space are usually motivated by physics and respond to the need to model specific properties
of the simulation system, the representation of this space thus obtained is by no means guaranteed
to be the most compressed, or decoupled. Symmetries and conservation laws, as well as couplings
between degrees of freedom and cancellations in the governing equations, may reduce the effective
dimensionality of the configuration space for the purpose of the computation of specific observables,
and lead to simpler representations thereof. This fact is of particular interest when the model is only
used to compute specific observable values, as an overtly complicated, redundant representation can
compromise and mislead the search task.

Several past efforts have illustrated strategies to extract more concise physics descriptions from
datasets (not necessarily originating from computational modelling). These efforts adopt either a
sparse-regression approach to reconstruct the governing equations for a given dataset (Schmidt &
Lipson, 2009; Brunton et al., 2016; Rudy et al., 2017), or attempt to use standard ML techniques
for data compression (such as VAE networks) to discover the basic parameters that control a dataset
(Iten et al., 2020; Nautrup et al., 2020). For datasets produced by simulation models, where the
equations governing the evolution of the data are already known, the latter approach seems much
more promising, and is the one we will adopt in this paper.
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In the following, we will show how a network of the type proposed in Iten et al. (2020); Nautrup et al.
(2020) can be trained on a dataset consisting of several thousands of coastal-dynamics simulations.
We will then assess the network’s ability to predict new dynamics, and examine the resulting latent
representation. As we tackle both of these tasks, we will attempt to answer the key question of how
an emulator might be built at the end of this procedure.

2 SIMULATION MODEL

The model used for all simulations performs the evolution of water-height data over a 2D domain,
according to the Boussinesq equation. The model is implemented in the Cactus software framework
(Löffler et al., 2012), as described in Oler et al. (2016); Chakrabarti et al. (2017). The basic setup
involves a two-level coastal profile, representing land and sea on either side of a straight stretch of
coast, shielded in part by a straight, infinite-height levee parallel to the coast. The water height’s
initial configuration is that of a plane wave, also parallel to the coast. The simulation computes the
evolution of the water level everywhere on the domain, as the initial profile marches inwards towards
the coast and waves are scattered around the domain. The model specification is summarised in Table
2 in Appendix A, along with sample plots of the wave configurations and evolution spanned by our
dataset.

We construct a dataset of 12,006 simulations by perturbing this basic setup. The variation consists
in a parametrized deformation of the levee, modelled by a sinusoidal displacement in the x direction
with amplitude a and wave number n:

xL = x̄L + a sin(πnyL) (1)

The amplitude a is sampled between -10 and 10, with a stride of 0.01, while the wave number n is in
{1, 6}. The key observable computed during the simulation is the maximum water level d? reached
by the water at a point immediately behind the levee, x? = 40, y? = 25. It is clear, from the plots
in Section 2 as well as from basic fluid-dynamics arguments, that the relationship between the levee
morphology and the maximum water level behind the levee is inevitably non-linear.

3 RESULTS

The main question we aim to explore in this paper is whether it is feasible to learn the map f :
(a, n)→ d?, so as not only to reconstruct f for any pair (a, n) (within a certain domain and up to a
certain accuracy), but also to capture and make physical sense of the key features of f .

An interesting approach to this end, described in Iten et al. (2020); Nautrup et al. (2020), involves
the use of a modified β Variational Auto-Encoder (β-VAE) architecture (called SciNet) to discover
the minimum-dimensional representation of the parameter space spanned by a dataset, given a spe-
cific observable of interest. In other words, the strategy aims to discover not the most generic and
minimal representation for the full phenomenology described by a dataset, but only that subset of
this representation which is useful to predict specific observable properties. Such representations
are dubbed operationally meaningful. Statistical independence of the individual components of this
representation is encouraged by the variational approach; the relative importance of reconstruction
accuracy and statistical correlation can be tuned through the parameter β, which weighs the contri-
bution of the latter term in the β-VAE’s loss function.

As our problem closely mirrors this structure, in that it is not the general coastal wave dynamics we
are interested in, but merely the resulting water level in a specific point of the domain, the particular
scheme proposed in Iten et al. (2020); Nautrup et al. (2020) appears promising.

We are immediately faced with a problem. SciNet’s method is designed to learn representations in
generic data-driven scenarios. Once a network is trained on a set of observations, a new prediction
can be obtained by feeding the β-VAE a new observation and letting it infer the target quantity. In
our case, however, the direct production of a new observation is precisely the expensive step we are
attempting to circumvent. A trained emulator would ideally take the values of the model’s input
parameters (not the model’s observed properties, which would require a costly simulation), and,
based on those alone, predict the target observable.
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Table 1: Training results for various values of the network parameters. All networks were trained
for 50 epochs. The last three columns represent the mean result over ten random train/test partitions.
The digits in parentheses indicate the order of magnitude of the standard deviation.

Configuration Ntrain nlatent nlayer β Loss Reconstruction Prediction
RMSE RMSE

a 10006 2 64 0 1.(8) · 10−4 (6) · 10−4 (6) · 10−5

b 10006 2 256 0 (2) · 10−4 (6) · 10−4 2.(1) · 10−5

c 10006 2 1024 0 (3) · 10−3 (2) · 10−3 (5) · 10−5

d 10006 1 64 0 (5) · 10−4 (8) · 10−4 3.(0) · 10−5

e 10006 5 64 0 (6) · 10−3 (2) · 10−3 (7) · 10−5

f 10006 10 64 0 (2) · 10−3 1.(9) · 10−3 (6) · 10−5

g 10006 2 64 0.2 −(8) · 10−2 (2) · 10−3 (7) · 10−5

h 10006 2 64 0.8 −3.(9) · 10−1 1.(2) · 10−3 4.(1) · 10−5

i 11886 2 64 0 (3) · 10−4 (7) · 10−4 (8) · 10−5

We envisage two possible modifications to SciNet’s approach that would address this type of appli-
cation:

• Approach I: only the decoder part of the trained network is used, so that one need only
specify values for the latent neurons to obtain a prediction. This approach, however, is
predicated on an important assumption: that the latent representation has a clear, explain-
able relationship with the original parameters (in our case, a and n), so that given values of
a and n, it is straightforward to compute the corresponding values for the latent neurons.
We will test this assumption in this paper, but will reserve for a future study the formulation
of a method that guarantees that this assumption is indeed satisfied.

• Approach II: the second solution is to attempt training the network with observations of
the system’s initial configuration, before any expensive evolution has to happen. This is the
approach we will use in this paper.

We construct a dataset with 12,006 entries representing the levee shape (essentially, equation (1)),
for (a, n) ∈ [−10, 10]×{1, 6}, as described in section 2. The shape is discretized as a vector of size
60, and each entry is labelled by the maximum water level d? at x? = 40m, y? = 25m. We train
a β-VAE with a 60-neuron input layer, a 1-neuron output layer, a two-level encoder and decoder of
size nlayer, and a latent representation of size nlatent (the architecture corresponds to Figure 1(b) in
Iten et al. (2020), except for the question neuron, which we omit). We illustrate the result of this
procedure, for various values of nlatent, nlayer, and β, in Table 1. For each configuration described
in the table, we perform the training 10 times: each time, we partition the dataset by randomly
extracting Ntrain simulations to use for the training, and using the remaining 12,006−Ntrain entries
for testing. The results in the last three columns represent the mean of each set of ten experiments
(the digit in parentheses indicating the order of magnitude of the standard deviation). Plots of the
different datasets and the corresponding network predictions are shown in Section B.

The method performs reasonably well on small deformation amplitudes, yielding mean prediction
RMSEs of around 0.01%, whilst the dataset variance is around two orders of magnitude higher.
Some basic properties that control the variation of d? are also captured correctly, such as the fact
that d? generally increases with |a|, and that odd values of n lead to larger d?. The network’s
performance on a sample dataset partition is shown in Figure 1, obtained for the first configuration
shown in the table. The complete results of this procedure for all datasets are shown in section B.

The results are very promising: we can presume that the dependence of d? on a and n is highly non-
trivial, corresponding to non-linear fluid-dynamic effects which couple wave evolution and domain
geometry in a way that is difficult to forecast in a simple, generalizable way. Yet, our approach
can both capture this dependence accurately, and provide a strategy that extends trivially to other
geometries, initial wave profiles, and even physical parameters and equations. We do need to note,
however, that the quality of both reconstruction and prediction appears to degrade for the simulations
where the water levels are particularly high (those corresponding to high |a|); an interesting follow-
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Figure 1: Inference results for one of the dataset partitions with Ntrain = 10006, nlatent = 2,
nlayer = 64, β = 0.

Figure 2: Values of the VAE’s latent neurons, r1 and r2, for simulations in the datasets corresponding
to configuration a (left) and h (right). Different colors represent different values of the wave number
n. Circles represents positive values of the amplitude a, while squares represent negative values. In
both cases, the marker size is proportional to |a|. We plot every fifth point in the respective datasets
to improve legibility.

up question is how well this method would apply to scenarios with extreme outliers, as we could
perhaps expect from models with more complex geometries or higher-dimensional configuration
spaces.

A further key question to investigate is whether the latent representations in the trained network are
able to highlight the principal features of the map f : (a, n)→ d?, and might potentially be used to
model this relationship in an accurate, explainable, and generalizable way (i.e., serve as the engine
of an emulator in the sense of Approach I above). In particular, it is interesting to observe the role
of the parameter β, as this is supposed to influence the distribution of simulations in the (r1, r2)
space directly. In Figure 2, we plot the values of the network’s latent neurons, r1 and r2, for all the
simulations in two representative datasets: one from configuration a and one from configuration h.

We notice that, in the representation corresponding to β = 0, the models corresponding to different
values of n split into different branches in the (r1, r2) plane, with a fairly regular dependence of
both r1 and r2 on a. The representation also respects the basic property that the map between (a, n)
and levee deformation ceases to be injective for a = 0, so that all the branches meet at one point.
Interpolating (and, to an extent, extrapolating) this representation to obtain the value of the target
observable for new (a, n) pairs should be straightforward. This relationship, combined with the
network’s decoder, would then act effectively as an emulator.

The representation obtained for β = 0.8 is much harder to interpret and, therefore, to model and
use within an emulator architecture. We argue that minimizing statistical correlations might not be
the right approach to ensure that the latent neurons represent independent degrees of freedom that
control the physical model. How exactly this independence might be represented and enforced when
training a VAE on data from physical simulations is an intriguing questions which we reserve for a
further study.
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Another important issue that will require further investigation is whether, and how well, the trained
networks generalize to predict the behavior of models with parameters outside of the training range.
The discussion above leads us to speculate that networks that encode more interpretable representa-
tions might be more generalizable, but further tests are required to test this conjecture.
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A WAVE DYNAMICS

In this section, we detail the quantitative aspects of the simulation model (Table 2), and show a
random set of water-height plots for different levee geometries (Figures 3 and 4).

The simulation configurations are all identical (same spatial domain, initial wave profile, bathymetry
structure, and so on), except for the shape of the levee, expressed by equation (1) and controlled by
a 2D parameter space spanned by the pair (a, n). For clarity, we illustrate these parametric shapes
along with the water height configurations in Figures 3-4. The full dataset is available on Zenodo
(Bentivegna, 2021).
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Figure 3: Random selection of simulation snapshots at t = 4s. Each plot is labelled by the corre-
sponding (n, a) pair. The levee shape for each simulation is outlined in white.
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Figure 4: Same selection of simulations as in Figure 3, but at t = 12s.
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Table 2: Parameters of unperturbed model. All levels are measured with respect to the sea bottom.

Parameter Value
Domain boundaries [0, 50m]× [0, 50m]
Spatial resolution 0.2m
x coordinate of the levee, x̄L 25m
y extension of the levee, yL [10m, 40m]
x interval of sea-land transition region [26m, 36m]
Initial x location of wave peak 15m
Coastal elevation 0.5m
Initial peak height 0.55m
Physical time of evolution 20s

B DATASETS AND RESULTS

In Figures 5-13, we show the complete results of the train and inference tasks corresponding to
configurations a to i.
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Figure 5: Inference results for Ntrain = 10006, nlatent = 2, nlayer = 64, β = 0 (configuration a).
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Figure 6: Inference results for Ntrain = 10006, nlatent = 2, nlayer = 256, β = 0 (configuration b).
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Figure 7: Inference results for Ntrain = 10006, nlatent = 2, nlayer = 1024, β = 0 (configuration c).
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Figure 8: Inference results for Ntrain = 10006, nlatent = 1, nlayer = 64, β = 0 (configuration d).
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Figure 9: Inference results for Ntrain = 10006, nlatent = 5, nlayer = 64, β = 0 (configuration e).
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Figure 10: Inference results for Ntrain = 10006, nlatent = 10, nlayer = 64, β = 0 (configuration f).
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Figure 11: Inference results for Ntrain = 10006, nlatent = 2, nlayer = 64, β = 0.2 (configuration
g).
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Figure 12: Inference results for Ntrain = 10006, nlatent = 2, nlayer = 64, β = 0.8 (configuration
h).
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Figure 13: Inference results for Ntrain = 11886, nlatent = 2, nlayer = 64, β = 0 (configuration i).
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