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ABSTRACT

Modeling nonlinear spatiotemporal dynamical systems has primarily relied on
partial differential equations (PDEs). However, the explicit formulation of PDEs
for many underexplored processes, such as climate systems, biochemical reac-
tion and epidemiology, remains uncertain or partially unknown, where very lim-
ited measurement data is yet available. To tackle this challenge, we propose a
novel deep learning architecture that forcibly encodes known physics knowledge
to facilitate learning in a data-driven manner. The coercive encoding mecha-
nism of physics, which is fundamentally different from the penalty-based physics-
informed learning, ensures the network to rigorously obey given physics. Instead
of using nonlinear activation functions, we propose a novel elementwise product
operation to achieve the nonlinearity of the model. Numerical experiment demon-
strates that the resulting physics-encoded learning paradigm possesses remarkable
robustness against data noise/scarcity and generalizability compared with some
state-of-the-art models for data-driven modeling.

1 BACKGROUND

Partial differential equations (PDEs) have played an indispensable role in modeling complex dynam-
ical systems or processes. However, there still exist a considerable portion of dynamical systems,
such as those in epidemiology and climate science, whose governing PDEs are unclear or only par-
tially known. To give prediction on systems like these, there have been efforts seeking alternatives
to the physics-based models. In recent years, increasing amount of attempts have been made on
leveraging physics principles to inform deep neural networks (DNN) for the modeling of systems in
a data-driven manner. Among those approaches, the physics-informed neural networks (PINN) is a
representative one that can be employed in data-driven modeling (Raissi, 2018), as well as solving
forward and inverse PDE problems (Raissi et al., 2019a;b; 2020; Rao et al., 2020). In the frame-
work of PINN, the network is usually informed by physics through a weakly imposed penalty loss
consisting of residuals of PDEs and initial/boundary conditions (I/BCs).

Although PINN has achieved success in modeling dynamical systems, one of its major limitations
is that its accuracy relies largely on the these soft physical constraints (Wang et al., 2020b; Rao
et al., 2021) which may not be satisfied well during training due to the ill-posedness of the op-
timization problem. Furthermore, the use of fully connected layers poses intrinsic limitations to
low-dimensional parameterizations. Efforts have been placed to overcome these issues by employ-
ing discrete learning schemes via convolutional filters, such as HybridNet (Long et al., 2018a), dense
convolutional encoder-decoder network (Zhu et al., 2019), auto-regressive encoder-decoder model
(Geneva & Zabaras, 2020), TF-Net (Wang et al., 2020a), DiscretizationNet (Ranade et al., 2021) and
PhyGeoNet (Gao et al., 2021). These methods generally show better computational efficiency and
accuracy. However, the core learning component of these networks is still a black box and the re-
sulting models lack the capability to “hard-encode” our prior physical knowledge. How to construct
a data-driven model that both fits limited data and generalizes well the underlying physics remains
a critical challenge.

To address this challenge, in this work, we propose a physics-encoded recurrent-convolutional neu-
ral network (PeRCNN), which forcibly encodes the physics structure to facilitate learning for data-
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driven modeling of nonlinear systems. The physics-encoding mechanism guarantees the model to
rigorously obey the given physics based on our prior knowledge. Instead of using activation func-
tions, which results in poor interpretability and generalizability, we achieve nonlinear approximation
via elementwise product among the feature maps, leading to a recurrent Π-block that renders PeR-
CNN with good expressiveness and flexibility at representing complex nonlinear physics. The Π-
block mimics governing terms in a PDE. The spatial dependency is learned by either convolutional
or predefined finite-difference-based filters while the temporal evolution is modeled by a forward
Euler time marching scheme. Numerical experiments demonstrate that PeRCNN outperforms the
existing models (e.g., ConvLSTM, ResNet and DHPM) in the metrics of generalizability.

Our work is closely related to the deep residual network (ResNet) which addresses the notorious
problem of gradient vanishing/exploding for very deep networks with residual learning (He et al.,
2016). Our network architecture also features the residual connection that enables the residual learn-
ing of dynamical systems, which has been interpreted by others as the forward Euler time-stepping
scheme (Chen et al., 2015; Chang et al., 2017; Chen et al., 2018; Ruthotto & Haber, 2019). People
have employed the recurrent ResNet, a variant of ResNet whose parameters are shared across time,
to solve spatiotemporal prediction problems (Liao & Poggio, 2016; Zhang et al., 2017). Although
ResNet has shown success in lots of applications, residual blocks composed of traditional convo-
lutional or fully connected layers still face the issue of poor interpretability, hence hindering its
applications to spatiotemporal dynamical systems where governing PDEs are potentially available.

2 METHODOLOGY

In this part, we elaborate the principle for designing the network architecture of PeRCNN for data-
driven modeling of spatiotemporal dynamical systems. The formulation to establish a data-driven
model from limited and noisy measurements is introduced in A.2 with more details.

2.1 NETWORK ARCHITECTURE
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Figure 1: Schematic architecture of PeRCNN: (a) the
network with a recurrent Π-block folded; and (b) Π-
block for the recurrent computation. Here, ũ0 is the
low-resolution noisy initial state measurement, while
Ûk is the predicted full-resolution solution at time
tk. The decoder (initial state generator) is used to
downscale/upsample the low-resolution initial state.

Our proposed PeRCNN (see Fig. 1) consists
of two major components: a fully convolu-
tional (Conv) network as initial state gen-
erator (ISG) and an unconventional Conv
block, namely Π-block (product), for re-
current computation, as depicted in Fig.
1(a). ISG enables a mapping from the noisy
low-resolution measurement ũ0 to the full-
resolution initial state Û0 from which the re-
current computation can be initiated.

In the Π-block shown in Fig. 1(b), which
is the core of PeRCNN, the state vari-
able Ûk from the previous time step first
goes through multiple parallel Conv layers,
whose feature maps will then be fused via
an elementwise product layer. A 1× 1 Conv
layer (or network in network (Lin et al.,
2013)) is appended after the product oper-
ation to aggregate multiple channels into the
output of desired number of channels. As-
suming the output of the 1×1 Conv layer ap-
proximates the nonlinear function F(·), we
multiply it by the time spacing δt to obtain
the residual of the dynamical system at time
tk, i.e., δÛk. The Π-block operation is ex-
pressed as:

Ûk+1 = Ûk +

{[
n∏

i=0

(
Ûk ∗Wi + bi

)]
∗W(1) + b(1)

}
δt (1)
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where ∗ denotes the Conv operation; Wi and bi are the weight and bias for the filter in the ith layer
while W(1) and b(1) correspond to those of the 1 × 1 Conv filter; n + 1 is the number of parallel
Conv layers; Π denotes the elementwise product; δt is the selected time spacing. It should be noted
that a highway physics-based Conv layer (see Fig 1(b)) could be created when some specific terms
are known a priori in the PDEs. Such a highway connection is not necessary to the succeed of data-
driven modeling but could accelerate the training speed and improve the extrapolation accuracy.

It is worth noting that we achieve the nonlinearity of our network via elementwise product of the fea-
ture maps instead of using nonlinear activation functions, mainly for three reasons: (1) Though the
nonlinear activation function is crucial to the expressiveness of the DL model, it is also a source of
poor interpretability. We consider it unfavorable to use these nonlinear functions to build a recurrent
block that aims to generalize the unknown physics. (2) The nonlinear functionF in the form of poly-
nomial1 covers a wide range of well-known dynamical systems, such as Navier-Stokes, reaction-
diffusion (RD), Lorenz, Schrödinger equations, to name only a few. Since the spatial derivatives can
be computed by Conv filters (Cai et al., 2012), a Π-block with n parallel Conv layers of appropriate
filter size is able to represent a polynomial up to the nth order. (3) Compared with the regression
models that heavily rely on predefined basis functions (Brunton et al., 2016), the Π-block is flexi-
ble at generalizing the function F . For example, a Π-block with 2 parallel layers of suitable filter
size ensembles a family of polynomials up to 2nd order (e.g., u, ∆u, uv, u · ∇u), with no need to
explicitly define the basis.

Although we mainly consider the nonlinear function F in the form of polynomial, terms of other
forms such as trigonometric and exponential functions can be incorporated by adding a particular
symbolic activation (e.g., sin, cos, exp, etc.) layer following the Conv operation.

2.2 HARD ENCODING MECHANISM OF PHYSICS

The encoding mechanism is employed to strictly impose the prior physical knowledge of the system
to PeCRNN, which contributes to a well-posed optimization problem. In this work, two types of
physics can be considered for hard-encoding, namely, the prior knowledge on I/BCs and active
terms in the governing PDEs. The ICs (or initial states) can be naturally imposed when PeRCNN
starts the recurrent computation from ũ0. For the BCs (Dirichlet or Neumann type), we borrow
the idea from the finite difference (FD) method and apply the physics-based padding to the model’s
prediction at each time step (i.e., Ûk). More specifically, we pad the prediction with prescribed
values defined by the Dirichlet BCs. The padding operations of the Neumann BCs will be computed
based on the boundary values and their gradient information.

PeRCNN also has the capability to encode prior-known terms in the governing PDEs via a highway
Conv layer (see Fig. 1(b)) with predefined FD-based filters. In Section 3, we consider a reaction-
diffusion system and assume the diffusion term ∆u is known. Therefore, a Conv layer with discrete
Laplacian operator (see Eq. (4)) as its filter is created to approximate ∆u. The associated diffusion
coefficient is unknown and placed as part of the trainable variables. It should be noted that, by using
the residual connection in the recurrent Π-block, we also implicitly encode the existing term of ut.

3 EXPERIMENTS

3.1 DATASETS

In the experiments, we employ two different dynamical systems, 2D Burgers’ equation and 3D Gray-
Scott (GS) reaction-diffusion (RD) equation, to examine our approach. The 2D Burgers’ equation,
with a wide applications in applied mathematics, such as fluid/traffic flow modeling, is given by

ut + u · ∇u = ν∆u (2)

where u = [u, v]T denotes the fluid velocities;∇ is the Nabla operator; ∆ is the Laplacian operator
and ν is the viscosity coefficient selected to be 0.005 in this case. We consider a computational
domain of Ω× [0, T ] = [−0.5, 0.5]2 × [0, 0.4] under periodic boundary conditions and generate the
solution on a 1012 × 1601 spatiotemporal grid.

1Polynomial herein encompasses linear derivative terms, e.g., u · ∇u+ u2v has 2nd and 3rd order terms.
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The second dataset considered is the 3D GS-RD equation, which can be described by

ut = D∆u + R(u) (3)

Here, u = [u, v]T is the concentration vector; D = diag(µu, µv) is the diagonal diffusion coefficient
matrix; R(u) = [−uv2 +f(1−u), uv2−(f+κ)v]T is the nonlinear reaction vector, where κ and f
denote the kill and feed rate, respectively. This model has found wide applications in computational
chemistry and biochemistry. In our dataset, the parameters of µu = 0.2, µv = 0.1, κ = 0.055 and
f = 0.025 are employed. We consider the physical domain of Ω × [0, T ] = [−50, 50]3 × [0, 750]
with periodic boundary condition and generate the solution on a Cartesian grid (493 × 1501) using
the FD method. For both of the two cases, we assume there is diffusion phenomenon observed in the
system, i.e., ∆u will appear in the governing PDE. In addition, 9-point stencil (see Eq. (4) in A.1)
is used to compute the diffusion terms while the Runge-Kutta method is adopted for time stepping.
The loss function employed in the training and the evaluation metrics are detailed in A.4 and A.5.

3.2 RESULTS

To evaluate the performance of the proposed PeRCNN, we make a comparison of the prediction
between the PeRCNN and some widely used spatiotemporal predictive models, e.g., ConvLSTM
(Shi et al., 2015), recurrent ResNet (Liao & Poggio, 2016; Zhang et al., 2017) and the deep hid-
den physics model (DHPM) (Raissi, 2018). A brief introduction to each method and the range of
hyperparameters considered are given in A.3.

3.2.1 2D BURGERS’ DATASET

In this case, the training data includes 11 low-resolution (51 × 51) snapshots uniformly selected
from the time interval of [0, 0.1] after 10% Gaussian noise is added to the original dataset. Also, 2
snapshots are used as the hold-out validation dataset for hyperparameters selection and early stop-
ping. Each model is constructed to produce the prediction with full spatiotemporal resolution, i.e.,
Û ∈ R2×401×101×101. After the model is finalized2, 1200 extra prediction steps are performed to
evaluate how the learned model generalizes beyond the training regime. Fig. 2 shows the snapshots
predicted by each model at t = 0.095 and 0.395. As shown in Fig. 2(a), all the models are able to fit
the training data and produce satisfactory prediction in the supervised time period. However, when
it comes to long-term extrapolation, the model predictions deviate from the ground truth signifi-
cantly except for PeRCNN, which demonstrates that PeRCNN generalizes the unknown underlying
physics well from the data. This conclusion is further confirmed by Fig. 4(a) which depicts the
accumulative RMSE (see Eq. (7)). We may notice that the accumulative RMSE starts from an initial
high value. This is due to the fact that the training data is corrupted by 10% Gaussian noise and the
metrics is computed from one single snapshot at the beginning. The effect of the unrelated noise
gradually fades out as more time steps are considered.

3.2.2 3D GRAY-SCOTT RD DATASET

In this example, the training data includes 21 noisy snapshots on a 253 grid sampled from t = 0 to
150. Each trained model produces 301 full-resolution snapshots during supervised learning stage
while 700 extrapolation steps are predicted after each model is finalized.

The predicted isosurfaces of two levels are plotted in Fig. 3. It can be observed that most of the
models are able to produce reasonable prediction during the supervised time period. However, for
the time beyond the training regime, the PeRCNN outperforms remaining models significantly. The
flat error propagation curve of PeRCNN, as shown in Fig. 4(b), also demonstrates the remarkable
generalization capability of PeRCNN.

As explained in Section 2.1, the architecture of PeRCNN enables a better approximation to the F of
nonlinear PDEs, resulting in the good generalization capability of our model. To verify this claim,
we exploit the multiplicative form of the Π-block and extract the explict expression from the learned
model. We find the equivalent expression of the learned model is quite close to the genuine PDE.
For more details on interpreting the learned PeRCNN model, please refer to Section A.6.

2All the implementations are coded in PyTorch or TensorFlow on a NVIDIA Tesla v100 GPU (32G).
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a. Training (0.095 s) b. Extrapolation (0.395 s) 

Figure 2: Contours for 2D Burgers’ predictions.

a. Training (140 s) 

u uv v

b. Extrapolation (480 s) 

Figure 3: Isosurfaces for 3D GS-RD predic-
tions. (u: blue = 0.5, red = 0.3; v: blue = 0.3,
red = 0.1).
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Figure 4: Error propagation of the training and extrapolation prediction.

4 CONCLUSIONS

A novel DL architecture, called PeRCNN, is developed for modeling of nonlinear spatiotemporal
dynamical systems based on sparse and noisy data. Our prior physics knowledge is forcibly encoded
into PeRCNN which guarantees the resulting network strictly obeys given physics (e.g., I/BCs or
known terms in PDEs). This brings distinct benefits for improving the convergence of training and
accuracy of the model. To evaluate the generalizability of PeRCNN, the trained model is used for
extrapolation along the temporal horizon. Comparisons with several state-of-the-art models demon-
strate that physics-encoded learning paradigm uniquely possesses remarkable robustness against
data noise/scarcity and generalizability. Equally important, PeRCNN shows good interpretability
due to the multiplicative form of the recurrent block. As shown in Section A.6, an explicit expres-
sion can be extracted from the learned model via some symbolic computations.

Although PeRCNN shows promise in data-driven modeling of complex systems, it is restricted by
the computational bottleneck due to the high dimensionality of the discretized system, especially
when it comes to systems in a large 3D spatial domain with long-term evolution. However, this
issue is expected to be addressed via temporal batching and multi-GPU training, to be investigated
in our future studies.
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A APPENDICES

A.1 DISCRETE LAPLACIAN OPERATOR

The discrete Laplacian operator, defined by Eq. (4), is used in finite difference (FD) method to
generate the synthetic dataset and in the PeRCNN to create physics-based convolutional layers.

W∆ =
1

12(δx)2


0 0 −1 0 0
0 0 16 0 0
−1 16 −60 16 −1
0 0 16 0 0
0 0 −1 0 0

 (4)

A.2 FORMULATION OF DATA-DRIVEN MODELING

Let us consider a spatiotemporal dynamical system described by a set of nonlinear, coupled PDEs,
expressed as

ut = F
(
x, t,u,u2,∇xu,u · ∇xu,∇2u, · · ·

)
(5)

where the state variable/solution u(x, t) ∈ Rs (e.g., u = [u, v]T for s = 2) is defined over the
spatiotemporal temporal domain {x, t} ∈ Ω × [0, T ]; ∇x is the Nabla operator with respect to x;
and F(·) is a nonlinear function. The solution to this problem is subject to the initial condition (IC)
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I(u,ut; t = 0,x ∈ Ω) = 0 and boundary condition (BC) B(u,∇xu, · · · ;x ∈ ∂Ω) = 0, where
∂Ω denotes the boundary of the system. In this work, we mainly focus on regular physical domains,
i.e., u can be discretized on a H × W Cartesian grid at time steps {t1, ..., tk, ..., tnt

}, where nt
denotes the total number of time steps. Provided a scarce and potentially noisy set of measurements
ũ ∈ R2×n′

t×H
′×W ′

over a coarser spatiotemporal grid, the goal of the data-driven modeling is
to establish a reliable model that gives the most likely full-field solution Û ∈ R2×nt×H×W and
possesses satisfactory extrapolation ability over the temporal horizon (e.g., for t > tnt ).

A.3 BASELINES FOR COMPARISONS

To make a comparison of the PeRCNN with other models used widely for data-driven modeling of
spatiotemporal systems, we also implemented the recurrent ResNet (Liao & Poggio, 2016; Zhang
et al., 2017), convolutional long-short term memory (ConvLSTM) (Shi et al., 2015) and deep hidden
physics model (DHPM) (Raissi, 2018). A very brief introduction to each method is given below for
readers to grasp the major characteristics of each model.

ConvLSTM (Shi et al., 2015) is a convolutional variant of LSTM which exploits multiple self-
parameterized controlling gates, such as input, forget and output gates, to capture the spatiotempo-
ral correlations among the data. It has been extensively used in applications such as video super-
resolution (Tao et al., 2017; Liang et al., 2017), traffic prediction (Yuan et al., 2018) and climate
forecasting (Shi et al., 2015), among many others.

Recurrent ResNet is another model adopted widely by researchers (Liao & Poggio, 2016; Zhang
et al., 2017) for the spatiotemporal prediction of dynamical systems. One main characteristic distin-
guishes the recurrent ResNet with the conventional ResNet (He et al., 2016) is that the weights are
shared across time.

DHPM (Raissi, 2018) differs from the previous two models as it utilizes fully connected neural
networks (FCNNs) and exert hidden (unknown) physics prior on the solution. In DHPM, one deep
FCNN is employed to fit the data, i.e., pairs of the spatiotemporal location and solution, while
another shallow FCNN is used to impose a hidden physical constraint on the fitted solution.

Since it is impossible to keep the hyperparameters exactly the same among different models, we
select the best configuration for each model from a range of hyperparameters, which are summa-
rized in Table 1, 2, 3 and 4. In addition to the listed hyperparameters, all other hyperparameters
are kept the same, e.g., training/validation/testing dataset split, the number of prediction steps, the
optimizer (Adam), the max number of epochs, the Gaussian noise level (10%) and the random seed.
In the network architecture design, we assume the solution within the domain is periodic while the
dynamical system of interest is accompanied with the ubiquitous diffusion phenomenon. Hence, a
diffusion Conv layer with fixed filters will be created in the following PeRCNN models.

Table 1: Range of hyperparameters for PeRCNN.

Dataset Filter size # layers # channels # channels Learning Rate λ
(Π-block) (ISG)

2D BE 1∼5 (5) 2∼4 (4) 4∼16 (8) 4∼16 (8) 0.001∼0.01 (0.002) 0.001∼1 (1)
3D GS 1∼5 (1) 2∼4 (3) 2∼8 (4) 4∼8 (4) 0.001∼0.01 (0.005) 0.001∼1 (0.5)

Table 2: Range of hyperparameters for ConvLSTM.
Dataset Filter size # layers # channels Learning rate Weight decay

2D BE 3∼5 (5) 1∼2 (2) 16∼32 (32) 0.0005∼0.01 (0.001) e-5∼e-3 (e-5)
3D GS 3∼5 (5) 1 8∼16 (16) 0.0005∼0.01 (0.0005) e-5∼e-3 (e-5)
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Table 3: Range of hyperparameters for recurrent ResNet.
Dataset Filter size # layers # channels Learning rate Weight decay

2D BE 3∼5 (3) 2∼4 (2) 16∼128 (64) 0.0005∼0.01 (0.002) e-5∼e-2 (e-4)
3D GS 3∼5 (3) 2∼3 (2) 8∼32 (32) 0.0005∼0.01 (0.001) e-5∼e-2 (e-4)

Table 4: Range of hyperparameters for DHPM.
Dataset N1 width N1 depth N2 width N2 depth Input for N2 Learning rate

2D BE 80∼120 (120) 4∼5 (5) 10∼30 (20) 2∼3 (2) (∆u,∆v, uux, 0.001 ∼0.02 (0.005)
vuy, uvx, vvy)

3D GS 60∼100 (80) 4∼5 (5) 10∼30 (10) 2∼3 (2) (∆u,∆v, u, v) 0.001 ∼0.02 (0.01)

A.4 LOSS FUNCTION

Given the low resolution measurement3 ũ ∈ R2×n′
t×H

′×W ′
where n′t < nt, H ′ < H and W ′ <

W , our goal of the data-driven modeling is to reconstruct the most likely full-field solution Û ∈
R2×nt×H×W . The loss function to train PeRCNN is defined as:

L(W,b) = MSE
(
Û(x̃)− ũ

)
+ λ ·MSE

(
Û0 − P(ũ0)

)
(6)

where Û(x̃) denotes the network’s prediction at the coarse grid nodes x̃; ũ denotes the low-
resolution measurement; P(·) is a spatial interpolation function (e.g., bicubic or bilinear); λ is
the weighting coefficient for the regularizer. The regularization term denotes the IC discrepancy
between the interpolated initial state and the network’s prediction, which is found effective in pre-
venting network overfitting.

A.5 EVALUATION METRICS

Accumulative rooted-mean-square error (RMSE), defined by Eq. (7), is employed to compute the
error of all snapshots before a time step tk. It is used throughout this paper to evaluate the error
propagation of the model prediction.

RMSE(tk) =

√√√√ 1

nk

k∑
i=1

∥∥∥Û i − U ref
i

∥∥∥2

2
(7)

where U ref
i is the reference solution and k ∈ {1, 2, · · · nt}.

A.6 INTERPRET THE LEARNED MODEL

Since each channel of the input (Ûk) denotes a state variable component (i.e., [u, v]), the multi-
plicative form of Π-block makes it possible to extract (or interpret) an explicit expression for F ,
in a symbolic way, from the learned weights and biases. We first interpret the learned model from
3D GS-RD case, whose parallel Conv layers have filter size of 1. In this case, each output channel
from the Conv layer would be the linear combination of u, v and a constant. The identified diffu-
sion coefficient matrix from the physics-based Conv layer is D = diag(0.18, 0.080). The extracted
expression from the learned Π-block is

R(u) =

[
−0.0074u3 − 0.0051u2v − 0.2uv2 − 0.0386v3 − 0.0018u2 − 0.11uv − 0.055v2 − 0.016u− 0.022v + 0.025
0.0005u3 − 0.013u2v + 0.54uv2 − 0.087v3 − 0.0076u2 + 0.023uv + 0.046v2 + 0.017u− 0.036v − 0.0097

]
(8)

which includes some distracting terms with small coefficients, due to the 10% noise and scarcity of
the training data.

To interpret terms involving partial derivatives (e.g., u∇2u, uux), it would require us to completely
freeze or impose moment matrix constraints on part of the convolutional filters (Long et al., 2018b).

3It can be readily generalized to 3D cases.
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Here, a simple experiment on 2D Burgers’ equation is conducted. The network employed has two
Conv layers with two channels. The first Conv layer are associated with ∂x and ∂y respectively,
by fixing the filters with corresponding FD stencils. The remaining settings are kept the same as in
Section 3.2.1 except that noise-free training data is used. The interpreted expression from the whole
PeRCNN model is

ut =

[
0.0051∆u− 0.95ux(1.07u− 0.0065v − 0.17) + 0.98uy(0.0045u− 1.01v + 0.17) + 0.053

0.0051∆v − 0.82vx(1.22u+ 0.0078v − 0.18)− 0.91vy(0.0063u+ 1.08v − 0.17) + 0.058

]
(9)

which is very close to the ground truth of the governing PDE. Although the selection of candidate
differential operators is crucial for identifying the genuine PDE, the Π-block shows better inter-
pretability compared with the prolonged nested function formed by the FCNN or CNN.
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