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ABSTRACT

With massive amounts of atomic simulation data available, there is a huge opportu-
nity to develop fast and accurate machine learning models to approximate expensive
physics-based calculations. The key quantity to estimate is atomic forces, where the
state-of-the-art Graph Neural Networks (GNNs) explicitly enforce basic physical
constraints such as rotation-covariance. However, to strictly satisfy the physical
constraints, existing models have to make tradeoffs between computational effi-
ciency and model expressiveness. Here we explore an alternative approach. By not
imposing explicit physical constraints, we can flexibly design expressive models
while maintaining their computational efficiency. Physical constraints are implic-
itly imposed by training the models using physics-based data augmentation. To
evaluate the approach, we carefully design a scalable and expressive GNN model,
ForceNet, and apply it to OC20 (Chanussot et al., 2020), an unprecedentedly-large
dataset of quantum physics calculations. Our proposed ForceNet is able to predict
atomic forces more accurately than state-of-the-art physics-based GNNs while
being faster both in training and inference. Overall, our promising results open up
an exciting avenue for future research.1

1 INTRODUCTION

Recently, massive physics-based data has been generated by ever-increasing scientific com-
pute (Chanussot et al., 2020; Nakata et al., 2019). This provides a huge opportunity for Machine
Learning (ML) approaches to efficiently and accurately model complex physical systems (Sanchez-
Gonzalez et al., 2020; Bapst et al., 2020; Kipf et al., 2018; Klicpera et al., 2020a; Battaglia et al.,
2016; Gilmer et al., 2017; Schütt et al., 2017a; Klicpera et al., 2020b). Of particular practical interest
is approximating atomic forces of quantum mechanical systems. This is because the underlying
quantum calculations are expensive (several hours per system) (Parr, 1980), and the resulting atomic
forces can be used for diverse chemistry applications, such as structure relaxations, molecular dynam-
ics, structural analyses, as well as transition state calculations. Behler (2016); del Río et al. (2019);
Frederiksen et al. (2007); Henkelman & Jónsson (2000); Henkelman et al. (2000).

The state-of-the-art approach to predicting atomic forces is physics-based message-passing Graph
Neural Networks (GNNs) (Gilmer et al., 2017), with the representative models being SchNet (Schütt
et al., 2017a) and DimeNet (Klicpera et al., 2020a;b). These GNNs first predict the energy of the entire
system in a rotation-invariant manner, and then predict the per-atom forces by taking the derivative of
the energy with respect to the atomic positions. By the architecture’s design, these GNNs produce
forces that obey the basic physical rules of rotation-covariance and energy-conservation.

However, designing effective GNNs, while satisfying these physical rules is highly non-trivial. For
instance, SchNet (Schütt et al., 2017b) is computationally efficient, but the model only uses atomic

1The full version of the paper available at https://arxiv.org/abs/2103.01436
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Figure 1: Comparison of S2F (atomic force prediction) performance across different models, while
taking computational efficiency into account. (Left): Comparison of validation learning curves,
where x-axis is training GPU days in the log-scale (lower left is better). (Right): Comparison of
validation performance and inference GPU hours (lower left is better; inference time is measured
over the in-distribution validation set). GPUs with the same specs are used for fair comparison.

distances in its message passing in order to ensure rotation-invariance of its energy prediction. Conse-
quently, SchNet fails to capture the 3D structure explicitly, resulting in sub-optimal generalization
performance. The recent DimeNet and DimeNet++ (Klicpera et al., 2020b;a) additionally capture
bond angle information in its message passing, but this comes with the cost of expensive message
computations involving atom triplets to ensure the rotation-invariance. As a result, DimeNet necessi-
tates tremendous compute to scale to a massive dataset (Figure 1 (left))—1600 GPU days to train
DimeNet++-large.

Here we explore an alternative approach, building on the recent framework of Graph Network-based
Simulators (GNS) (Sanchez-Gonzalez et al., 2020; Bapst et al., 2020). Specifically, by not explicitly
imposing physical constraints in the model architecture, we can flexibly design expressive GNN
models and use the full 3D atomic positions in a scalable manner. In exchange, the predicted forces
are translation-invariant but no longer rotation-covariant. As we demonstrate empirically, this issue
can be alleviated by training models on a massive dataset with rotation data augmentation. In other
words, we impose physical constraints to the model implicitly through physics-based data rather
than explicitly through architectural constraints. Our model also does not explicitly enforce energy
conservation. However, this removes the memory-intensive calculations in physics-based GNNs, i.e.,
compute forces through energy gradients that require second-order derivatives to optimize.

To realize our approach, we carefully design a GNN model that accurately captures 3D atomic
structure in a scalable and flexible manner. The resulting model is ForceNet that uses an expressive
message passing architecture with carefully-chosen basis and non-linear activation functions.

We evaluate ForceNet on OC20 Chanussot et al. (2020), a recently-introduced large-scale dataset of
quantum physics calculations with 200+ million large atomic structures (20–200 atoms) useful for
discovering new catalysts for energy applications Seh et al. (2017); Jouny et al. (2018); Zitnick et al.
(2020) (Figure 2). Even without any explicit physical constraints, ForceNet is able to achieve higher
accuracy than physics-based GNNs when trained with comparable computational resources (Figure 1
(left)). Moreover, ForceNet (resp. ForceNet-large) achieves prediction errors that are comparable to
the state-of-the-art DimeNet++ (resp. DimeNet++-large) with 6 (resp. 8) times less inference time
(Figure 1 (right)). Finally, compared to DimeNet++, ForceNet-large achieves more accurate force
prediction, while being faster both in training and inference (Figure 1 (left) and (right)).

2 FORCENET

ForceNet follows the encoder-decoder architecture of the GNS framework (Sanchez-Gonzalez et al.,
2020; Battaglia et al., 2016; Kipf et al., 2018). The input to ForceNet is an atomic structure, i.e., a set
of atoms and their 3D spatial positions (Figure 2). Given the input, a radius graph is first constructed,
i.e., each atom’s neighborhood is defined as atoms that are within the cutoff distance c. We set c to
be 6 Angstrom, resulting in the average of 35 neighbors per atom. After the graph is obtained, the
encoder uses scalable iterative message passing to compute node embeddings ht that capture the 3D
structure surrounding each atom, and the decoder uses an Multi-Layer Perceptron (MLP) to directly
predict per-atom forces from these embeddings.
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Figure 2: Illustration of sampled sys-
tems from the OC20 dataset (Chanus-
sot et al., 2020). Each system consists
of adsorbate (the small molecule on the
surface) and catalysis (the large grid-
like molecule sitting below the adsor-
bate), and is repeated in the direction
of the horizontal axes infinitely. Our
ForceNet aims to efficiently predict per-
atom forces.

Figure 3: Model diagram for messages mst (from
atom s to atom t) used by ForceNet in Eqns. (2). The
key components are (a) the expressive conditional
filter Fc that is dependent on full edge feature est as
well as source and target node embeddings, (b) the
basis function B over the edge feature that helps the
network to accurately capture atomic interactions,
and (c) the smooth curved non-linearity of the Swish
activation.

The critical aspect of ForceNet is its encoder and specifically the scalable message computation that
effectively captures the non-linear and complex 3D atomic interactions to predict the atomic forces.
The encoder updates ht as:

h
(k+1)
t = Fn

(
mt +

∑
s∈Nt

mst

)
+ h

(k)
t , (1)

where the messages mst and mt are summed and passed through the function Fn : RD → RD that
is a 1-hidden-layer MLP with batch normalization (Ioffe & Szegedy, 2015). The dimensionality of
the node and hidden layer features is D. Equation (1) follows standard GNN embedding update
formulations (Gilmer et al., 2017) with the addition of a residual connection, h(k)

t (He et al., 2016).
There are three key components in our message modeling, which are illustrated in Figure 3 and
described below. These designs are then extensively ablated in Appendix F.

(a) Conditional Filter Convolution. To compute the inter-atomic messages mst, we start from
SchNet’s continuous filter convolution (Schütt et al., 2017a), and make two important modifications.
First, we use the edge feature est (described below) that encodes rotation-covariant directional
information (not just the rotation-invariant distance). This way, the predicted forces can change as the
system is rotated. Second, we condition the message on both the source h

(k)
s and target h(k)

t node
information. This allows ForceNet to capture complex interactions between different atom types.
Including the two modifications, we model the inter-atomic message as:

mst = α(‖dst‖) · Fe
(
h(k)
s ,Fb(B (est)) ,h

(k)
t

)
� Fd(h

(k)
s ), (2)

where all F∗(·) functions are learnable and are either linear functions or MLPs (see Figure 3). The
edge feature is defined as est ≡ Concat(nst,pst/c) ∈ R7, where nst ≡ dst/‖dst‖ is a normalized
directional vector and pst ∈ R4 is a list of four atomic distances ‖dst‖, ‖dst‖ − as, ‖dst‖ −
at, ‖dst‖ − as − at that take into account the atomic radii (Slater, 1964) as and at of atoms s and
t, respectively. α(x) = cos(πx/2c) is a scalar that decays to zero as ‖dst‖ approaches the distance
cutoff c.

(b) Basis function. To accurately predict complex atomic forces, it is crucial to capture the subtle
change in input 3D structure, which is reflected in subtle change in the edge feature est. However,
the raw edge feature is rather low-dimensional (7-dimensional), making it hard for neural networks
to capture its subtle change. To resolve this issue, an important aspect of message modeling in Eqn. 2
is the choice of basis function B : R7 → RB that transforms the raw distance features est into ones
that are more high-dimensional (7� B) and discriminative. Several choices of basis functions have
been proposed, such as a Gaussian over 1D distances (Schütt et al., 2017a) and a spherical Bessel
function over the joint 2D space of the edge distance and angle (Klicpera et al., 2020b). We extend
these ideas to capture the full 3D positional differences between atoms, and systematically study the
effectiveness of 5 different choices of basis functions in the context of a force-centric model. Due to
space constraint, we provide the detailed descriptions of the basis functions in Appendix A.
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(c) Expressive Non-Linearity in MLPs. Our final key component is simple but crucial: the choice
of non-linear activation function plays a central role in modeling complex non-linearities of atomic
intereactions. The ReLU activation (Glorot et al., 2011) is widely used in many deep learning models,
including the existing GNS model (Sanchez-Gonzalez et al., 2020; Bapst et al., 2020). However,
ReLU may not be ideal in modeling atomic forces, since it results in outputs being modeled as piece-
wise linear hyper-planes with sharp boundaries. Ideally, we desire a smooth and expressive non-linear
activation function. Instead of ReLU, we propose to use the Swish activation (Ramachandran et al.,
2017). Swish provides a smoother output landscape and has non-zero activation for negative inputs.
The replacement of ReLU with Swish consistently and significantly improves the predictive accuracy
while maintaining scalability across all choices of basis functions.

Rotation data augmentation. The prediction of ForceNet is not necessarily rotation-covariant. To
encourage the rotation-covariance, we apply random rotation data augmentation along the axis that is
vertical to the material surface (see (Figure 2)). Specifically, we randomly rotate the entire system
and per-atom forces by the same degree, and let ForceNet predict the rotated forces based on the
rotated system.

3 EXPERIMENTS

In this section, we evaluate ForceNet’s performance in predicting atomic forces. We do so by applying
the model to OC20 (Chanussot et al., 2020), a massive dataset on quantum physics calculations on non-
equilibrium atomic structures relevant to catalysis discovery. Following Chanussot et al. (2020), the
prediction error is measured by Mean Absolute Error (MAE). We normalize for computational time
when comparing models’ predictive performance, i.e., we compare models with similar computational
cost in training and inference. This is crucial because simply using more computational resources to
train larger models is shown to lead better results in OC20 tasks (Chanussot et al., 2020). However,
training time of most existing models is already more than 100 GPU days (defined as the number of
GPUs times the number of days the GPUs are used). and even goes up to 1600 GPU days, making it
harder to further scale up without improving the models’ computational efficiency. Moreover, fast
model inference is crucial for the application of catalyst material discovery, where an ML model
needs to make predictions over an enormous number of potential candidates (Zitnick et al., 2020).

Table 1: Analysis of how training data and rotation aug-
mentation affect the stability of ForceNet’s prediction
against rotation. 1000 validation ID structures are sam-
pled and randomly rotated 100 times along the vertical
axis. For each rotated structure, ForceNet predicts per-
atom forces that are then rotated back to compare with
the originally-predicted forces. Instability is measured
by the average standard deviation of the errors across the
100 rotations for each (free) atom. Smaller instability
values indicate the model is closer to being rotation-
covariant, where a fully rotation-covariant model would
always give a value of 0.

Dataset Rotation Average instability of Val Force MAE
aug. per-atom force pred. ID Average

All (130M) " 0.0037 0.0313 0.0360
All (130M) 0.0069 0.0314 0.0366

2M " 0.0041 0.0332 0.0382
2M 0.0093 0.0346 0.0400

As baseline models, we use the force-
centric model proposed in the GNS
work (Sanchez-Gonzalez et al., 2020), as
well as the energy-centric SchNet (Schütt
et al., 2017a) and DimeNet++ (Klicpera
et al., 2020a). ∗-large denotes that the
model size is larger. The detailed model
settings can be found in Appendix C.

Results Our main results are plotted in
Figure 1. In Table 2 of Appendix F,
we provide complete numerical results.
From Figure 1 (left), we see that ForceNet
gives superior force prediction perfor-
mance given limited training GPU budgets.
In Figure 1 (right), we see that ForceNet
achieves prediction performance compara-
ble to DimeNet++, while enabling much
faster inference speed. In Table 1, We also
analyze whether ForceNet is able to learn
rotation-covariance when predicting atomic forces. We do so by measuring the prediction instability
of ForceNet when validation systems are rotated. We see a clear trend that both large data and rotation
augmentation help to reduce the instability of ForceNet’s prediction against rotation. Moreover, the
instability of ForceNet trained on all data and rotation augmentation is relatively small compared to
its force MAE, suggesting that ForceNet’s prediction is close to be rotation covariant in the practical
sense. Furthermore, in Appendix F, we perform extensive ablation studies on ForceNet’s key design
choices presented in Section 2. We demonstrate that each design choice is crucial in ForceNet’s final
performance.
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4 CONCLUSIONS

In physical modeling, the conventional approach has been to explicitly enforce physical constraints
into model architecture, but this presents a trade-off between model’s expressiveness and computa-
tional efficiency. In this work, we explore an alternative approach: not enforcing physical constraints
explicitly, thereby allowing expressive and scalable models to be built in a flexible way. We carefully
design the ForceNet architecture and train it on a huge amount of data with physics-based data
augmentation. We demonstrate that ForceNet, without any explicit physical constraints, are able
to predict atomic forces more accurately than state-of-the-art energy-centric GNN models, while
being faster both in training and inference. We hope our unconventional approach and the promising
empirical evidence open up an exciting avenue for further research.
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Figure 4: 2D Illustration of a slab that represents a catalyst’s surface and an adsorbate. The slab is
tiled in the x and y directions to create the surface (neighboring cells shown as atoms with dashed
outlines). Only the cells to the left ([−1, 0, 0]) and right ([1, 0, 0]) are shown. The adsorbate is also
assumed to be tiled with the slab (white, red, and grey atoms). Only the top 2 layers of the slab are
allowed to move during a relaxation (dark blue), and the others are fixed (light blue). Neighboring
atoms (black arrows) can be from the same cell or neighboring cells (t and s′). All atoms within a
radius (dotted circle) are assumed to be neighbors.

A BASIS FUNCTION DESIGN

Here we present 5 different choices of basis functions to encode the raw edge features.

Identity: Bid(x) = x. The baseline is to use the edge features est directly.

Linear + Act: Blinact(x) = g(Wx+ b), where g(·) is the non-linear activation function, and W
and b are the learnable parameters. When followed by the linear layer Fb, this is equivalent to
applying an 1-hidden-layer MLP over the edge features est.

Gaussian: Bgauss(x) = [b1, . . . , bJ ], where bj is the output of the j-th basis function bj(x) =

exp(x−µj)
2/(2·σ2). The Gaussian means are evenly distributed on the interval between 0 and 1, i.e.,

µj = j/(J − 1) and the standard deviation σ = 1/(J − 1). All values of x are normalized to lie
between 0 and 1, where normalization is performed globally, e.g., dividing the atomic distance ‖dst‖
by c. Bgauss is applied to each dimension of est, resulting in a B = J × E vector.

Sine: Bsin(x) = [b1, . . . , bJ ], where bj is the output of the j-th basis function bj(x) = sin(1.1jx).
The design is based on function approximation using the Fourier series. In our experiments, we find
that using only the sinusoidal component of the Fourier series is sufficient. Bsin is applied to each
dimension of est, resulting in an B = J × E vector.

Spherical harmonics: Bsph(est) = YL(θ, φ)R(pst)
> where YL is the list of Laplace’s spherical

harmonics (MacRobert, 1947) used to encode the angular information and R(pst) encodes the
distance. We use spherical harmonic functions up to degree L, which gives us L2 orthogonal basis in
total. The angles θ and φ can be directly computed from nst ∈ R3 in est. R uses a linear combination
of the above sine basis functions computed from pst ∈ R4 in est (thus, 4J basis functions in total)
to encode distance information. Specifically, R(pst) = WradBsin(pst) + brad ∈ RS , where Wrad

and brad are learnable parameters. Bsph is flattened into a vector before being passed into Fb. The
dimensionality of Bsph is B = SL2, where we set S to be the dimensionality of pst.

B DESCRIPTION OF OC20 DATASET

The OC20 dataset (Chanussot et al., 2020) contains over 130M non-equilibrium structures for training
for the S2F task (i.e., atomic force prediction). The structures come from over 650K relaxation
trajectories—the movement of the atoms from the initial structure to relaxed structure (equilibrium
3D structures with all-zero atomic forces).
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Each structure contains the 3D positions of atoms in an adsorbate and catalyst slab, Figure 4. The
adsorbate is a molecule involved in the chemical reaction that interacts with the catalyst’s surface.
The adsorbate contains 1 to 11 atoms. The catalyst is represented as a “slab” that repeats infinitely in
the x and y directions. The slab structure is repeated in a grid pattern where each repetition is referred
to as a “cell”. The center cell has coordinate (0, 0, 0) with the cell to the left right being (−1, 0, 0)
and (1, 0, 0) respectively. The slab is not repeated in the z direction. Instead, the atoms at the bottom
of the slab are assumed to be fixed and not move during a relaxation, which approximates how they
would be held in place by the catalyst’s atoms below the slab. Typically, only the top two layers of the
catalyst’s surface are assumed to be free and are moved according to their forces during a relaxation
(see Figure 4). Therefore, forces are only evaluated on free catalyst atoms and the adsorbate.

The forces on the same atom in different cells are identical, since their atom neighbors are identical,
resulting in their GNN’s node embeddings to be also identical, e.g., the node embedding of atoms
marked s and s′ in Figure 4 are the same. When computing the neighborhood of an atom, atoms
in neighboring cells need to be also taken into consideration (atom t in Figure 4). Notice that the
message from s to t and the message from s′ to t are different since the the relative placements of
the two atoms are different, resulting in different edge features est and es′t. Computing the edge
features between atoms from different cells can be done using the supplied information in the OC20
dataset for periodic boundary conditions.

C DETAILS OF MODEL SETTINGS

Below, we describe hyper-parameter settings of ForceNet and baseline models, along with the
computational time (in GPU days) to train these models. Table 2 shows the summary of training
time, inference time, and sizes of different models. All the training is run under Tesla V100 Volta.
The inference time is measured on the validation ID set under GeForce RTX 2080, where the largest
possible batch size is used for each model.

ForceNet. We use the spherical function and Swish activation as the default basis and activation
functions, since this combination consistently provides the best results (Figure 5). The default model
size has 5-layers of message passing and 512-dimensional hidden channels, and the training batch
size is set to 256. We also consider a larger variant, ForceNet-large, that uses 7-layer message passing,
768-dimensional hidden channels, and the batch size of 512. Training ForceNet and ForceNet-large
takes 31 and 194 GPU days, respectively.

During training, we apply the data-efficient rotation augmentation strategy. We also find it useful to
train on both free and fixed atoms, even though the evaluation is only on the free atoms. Specifically,
we give a small relative weight of 0.05 to the loss of fixed atoms during training, which is ablated
in Table 7 of Appendix G. Further implementation details and hyper-parameters are provided in
Appendix D.

Baseline models. We compare ForceNet against the following three strong baseline GNN models.

• SchNet (Schütt et al., 2017a) is an energy-centric GNN that uses scalable atom-pair-based message
passing; hence, a relatively large model size (5-layer message passing with 1024-dimensional
hidden channels) can be trained with 194 GPU hours, which is comparable to ForceNet-large.

• DimeNet++ (Klicpera et al., 2020a) is a recent improvement of DimeNet (Klicpera et al., 2020b)
and is also an energy-centric GNN. It uses atom-triplet-based message passing to capture angular
information, which makes it computationally expensive. Even training DimeNet++ of a relatively-
small model size (3-layer message passing with 192-dimensional hidden channels) requires 587
GPU days—18.9 and 3.0 times more expensive than ForceNet and ForceNet-large, respectively.
Training DimeNet++-large (3-layer message-passing with 512-dimensional hidden channels) takes
a significant 1600 GPU days of compute, being 51.6 and 8.2 times more expensive than ForceNet
and ForceNet-large, respectively.

• GNS model (Sanchez-Gonzalez et al., 2020) is a scalable force-centric model that directly predicts
atomic forces. We make its model size (in terms of the number of parameters) comparable to
ForceNet. The training takes 20 GPU days, which is 1.6× faster than ForceNet. However, as we
will see, the performance of ForceNet is better even if ForceNet’s training is truncated at 20 GPU
days.
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All the results of SchNet and DimeNet++ are directly adopted from the OC20 paper (Chanussot
et al., 2020). These energy-centric models are trained only on atomic forces, although in principle,
they can be aso trained on per-system energy. Chanussot et al. (2020) report that training on forces
and energy seperately achieves better performance on each task compared to joint training. For the
GNS model, we reproduce the original model architecture ourselves based on the feedback from the
original author of GNS (Sanchez-Gonzalez et al., 2020). Refer to Appendix E for implementation
details. On the GNS model, we apply the same training strategies as ForceNet.

D HYPER-PARAMETERS

For training, we use the Adam optimizer (Kingma & Ba, 2015), with an initial learning rate of 0.0005.
We train ForceNet and the GNS model for 500K iterations with the batch size of 256, which is
equivalent to 1 epoch for the entire dataset2. For ForceNet-large, we use the batch size of 512. All
the parameters of the force-centric models are initialized with Xavier uniform initialization (Glorot &
Bengio, 2010). The learning rate is kept constant for the first 250K iterations, after which it is halved
every 50K iterations. We use the checkpoint with the best validation ID performance, and evaluate
the saved model over all four validation sets. MAE over forces is used as the training loss. We will
evaluate our models on the hidden test sets once the test server is ready.

For Gaussian and sine basis functions, we use J = 50, which gives an output dimensionality of
B = 350. For Linear+Act, we set B = 350. For spherical basis, we use L = 3 and S = 4, which
results in B = 36(= 32 · 4), and we set J = 50 for the internally-used sine basis function. For
encoding the input atomic node features, we first normalize each dimension to lie between 0 and 1,
and adopt the same basis function as used for encoding the edge features. The exception is spherical
basis that is specialized for 3D spaces, in which case, the sine basis is used to encode the input
atomic node features. We find that increasing J and L beyond the above values does not improve the
performance, while significantly decreasing them worsens the performance.

E DETAILS OF GNS MODEL

For the GNS results in this paper, we reimplemented the original GNS model (Sanchez-Gonzalez
et al., 2020). Since the public code for the original GNS model (Sanchez-Gonzalez et al., 2020) was
not available at the time of our experiments, we communicated with one of the authors to confirm the
implementation details.

The message in the GNS model is defined as

m(h
(l)
t , est,h

(l)
s ) = MLP

(
Concat

(
h
(l)
t , est,h

(l)
s

))
,

where MLP(·) is a 1-hidden-layer MLP with ReLU activation and layer normalization (Ba et al.,
2016) applied before the activation. For aggregating the message, the GNS model used either mean
or sum, so we tried both in our experiments. We found sum aggregation to perform better, and report
results of sum aggregation in this paper. After the messages are aggregated, GNS uses a learnable
linear function to transform the node embeddings. Similar to ForceNet, we additionally apply a batch
normalization on the node embeddings, which alleviates training instability and significantly improves
performance. The GNS model uses a residual connection, where the computed node embeddings are
added into the node embeddings from the previous layer. For the decoder, the GNS model uses a
1-hidden-layer MLP with ReLU activation. All the node embeddings and hidden units in the MLPs
have the same dimensionality.

F EXPERIMENTAL RESULTS

Here we provide our experimental results for predicting atomic forces in the OC20 dataset, including
the comparison to the baseline model (Appendix F.1) and extensive ablation studies of ForceNet
(Appendix F.2).

2We do not observe much gain by training models longer than 1 epoch. This is probably because of the
redundancy in data, i.e., out of 130M data points, there are 650k unique atom configurations (ignoring the
positional differences).
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Table 2: Comparison of ForceNet to existing GNN models. We mark as bold the best performance
and close ones, i.e., within 0.0005 MAE, which according to our preliminary experiments, is a
good threshold to meaningfully distinguish model performance. Training time is in GPU days, and
inference time is in GPU hours. Median represents the trivial baseline of always predicting the
median training force across all the validation atoms.

Model Hidden #Msg #Params Train Inference Validation Force MAE (eV/Å)
dim layers time time ID OOD Ads. OOD Cat. OOD Both Average

Median – – – 0.0810 0.0799 0.0799 0.0943 0.0838

GNS 768 5 12.5M 20d 1.5h 0.0421 0.0466 0.0430 0.0559 0.0469
SchNet 1024 5 9.1M 194d 0.8h 0.0443 0.0514 0.0465 0.0618 0.0510
DimeNet++ 192 3 1.8M 587d 8.5h 0.0332 0.0366 0.0344 0.0436 0.0369
DimeNet++-large 512 3 10.7M 1600d 27.0h 0.0281 0.0318 0.0315 0.0396 0.0328
ForceNet 512 5 11.3M 31d 1.3h 0.0313 0.0355 0.0334 0.0439 0.0360
ForceNet-large 768 7 34.8M 194d 3.5h 0.0281 0.0320 0.0327 0.0412 0.0335

We evaluate models on four validation datasets that test different levels of model generalization: In
Domain (ID), Out of Domain Adsorbate (OOD Adsorbate), OOD Catalyst, and OOD Both (both the
adsorbate and catalyst’s material are not seen in training). Each split contains 1M examples. All the
models and their settings are explained in Appendix C.

Following Chanussot et al. (2020), the Mean Absolute Error (MAE) of forces on free atoms is
evaluated for each validation set. Here the free atoms represent atoms that are close to the material
surface and are free to move during atomic relaxation simulation (Figure 4 in Appendix B). We use
the “average force MAE” to represent the MAE of forces averaged over the four validation sets.

F.1 COMPARISON TO BASELINE MODELS

In Table 2, we provide the complete results for our comparison of ForceNet and the baseline models.

F.2 ABLATION ON FORCENET’S MODEL DESIGNS

Here we perform extensive ablation studies on ForceNet’s key design choices presented in Section 2.

F.2.1 BASIS AND ACTIVATION FUNCTIONS

We systematically study how choices of different basis and non-linear activation functions affect the
model performance. The baseline functions are explained in Appendix A. We also compare with the
“None” baseline, which does not use a basis function and directly concatenates the input raw edge
feature into the node embeddings. In Figure 5, we see that the combination of spherical basis and
Swish activation performs the best. For comparison, the GNS model uses no basis function (“None”)
and ReLU, see Appendix E for full GNS model details.

F.2.2 ARCHITECTURE DESIGN

Next, we study the architectural building blocks of our conditional-filter-based message passing with
the fixed basis and activation functions. We consider seven cases: (1) Only-dist: we remove nst
from the input edge feature, i.e., est ≡ pst, resulting in the edge features being rotation invariant.
(2) No-atomic-radii: we set the input edge features to est ≡ Concat (nst, ‖dst‖) (atomic radii
information is dropped), (3) No-node-emb: filter Fc is a function of only est (conditioning on source
and target node embeddings h(k)

s ,h
(k)
t is dropped), (4) Only-Fc: Filter is directly aggregated, i.e.,

mst = Fc, and self-message mt is omitted. (5) Edge-linear-BN: MLP Fe is replaced with a linear
function followed by batch normalization, (6) Node-linear-BN: MLP Fn is replaced with a linear
function followed by batch normalization. (7) No-mt: self-message mt is removed. Note that in (5)
and especially (6), we find it critical to add the batch normalization to facilitate training.

Table 3 shows the results of the seven ablation studies. Most notably, (1) is significantly worse than
the rest, because rotation-invariant node embeddings are insufficient for predicting rotation-covariant
forces. We also see from (2) and (3) that making the filter less expressive, especially by dropping the
dependency on node embeddings, significantly hurts performance. The improvement from element-
wise product parameterization Fc � Fd is demonstrated in (4). From (5), we see that it is critical to

11



Published as a workshop paper at ICLR 2021 SimDL Workshop

Table 3: Ablations on the
architecture of ForceNet.

Ablation Average Force
MAE (eV/Å)

ForceNet 0.0360
(1) Only-dist 0.0699
(2) No-atomic-radii 0.0368
(3) No-node-emb 0.0410
(4) Only-Fc 0.0378
(5) Edge-linear-BN 0.0427
(6) Node-linear-BN 0.0364
(7) No-mt 0.0364

Figure 5: Ablations on basis and
activation functions in ForceNet.

Table 4: Ablation of model
scaling in terms of : (a) hid-
den dimensionality, (b) num-
ber of message passing lay-
ers, and (c) training batch
size. Training time is roughly
proportional to (b) and (c)
and quadratic in (a).

Hidden #Msg Batch Average Force
dim layers size MAE (eV/Å)
512 5 256 0.0360
768 5 256 0.0352
512 7 256 0.0355
768 7 256 0.0352
768 7 512 0.0345

Table 5: Ablations on basis and activation functions in the ForceNet architecture.

Basis Act. Validation Force MAE (eV/Å)
ID OOD Ads. OOD Cat. OOD Both Average

Spherical ReLU 0.0324 0.0367 0.0346 0.0454 0.0373
Spherical Swish 0.0313 0.0355 0.0334 0.0439 0.0360
Sine ReLU 0.0324 0.0367 0.0346 0.0456 0.0374
Sine Swish 0.0317 0.0360 0.0342 0.0448 0.0367

Gauss ReLU 0.0335 0.0384 0.0359 0.0476 0.0389
Gauss Swish 0.0318 0.0364 0.0346 0.0456 0.0371

Linear+Act ReLU 0.0340 0.0379 0.0356 0.0464 0.0385
Linear+Act Swish 0.0321 0.0359 0.0342 0.0445 0.0367

Identity ReLU 0.0335 0.0377 0.0353 0.0464 0.0382
Identity Swish 0.0322 0.0364 0.0338 0.0445 0.0368

None ReLU 0.0379 0.0430 0.0391 0.0519 0.0430
None Swish 0.0330 0.0383 0.0347 0.0466 0.0382

utilize non-linear models for edge features, as atomic forces are highly dependent on their subtle
changes, but non-linearities are not essential for node embeddings (6). Finally, from (7), we see that
the self-message mt is not essential in performance.

Overall, our analysis suggests that ForceNet benefits most from its expressive edge-level computation
via the conditional filter, which is directly responsible for accurately encoding the 3D neighborhood
structure on which the atomic forces depend.

F.2.3 MODEL SCALING

Comparing ForceNet and ForceNet-large in Table 2, we see that a larger model provides significant
performance gain, at the cost of 6.3 times more training time and 2.4 times more inference time.
Extrapolating through Figure 1, we expect ForceNet to significantly outperform DimeNet++, once
comparable computational resources are used. We leave this investigation to future work. More
fine-grained ablations on model scaling are shown in Table 4. We see that all the three scaling
components help in the current regime of ForceNet.

G FULL ABLATION RESULTS

Here we provide full S2F results of our ablation studies, reporting the force MAE on each of the four
validation sets.
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Table 6: Ablations on the message passing architecture of ForceNet.

Ablation Validation Force MAE (eV/Å)
ID OOD Ads. OOD Cat. OOD Both Average

ForceNet 0.0313 0.0355 0.0334 0.0439 0.0360
(1) Only-dist 0.0658 0.0673 0.0660 0.0805 0.0699
(2) No-atomic-radii 0.0321 0.0362 0.0342 0.0447 0.0368
(3) No-node-emb 0.0361 0.0409 0.0374 0.0495 0.0410
(4) Only-Fc 0.0333 0.0372 0.0350 0.0455 0.0378
(5) Edge-linear-BN 0.0371 0.0430 0.0388 0.0520 0.0427
(6) Node-linear-BN 0.0317 0.0356 0.0339 0.0442 0.0364
(7) No-mt 0.0314 0.0360 0.0336 0.0444 0.0364

Table 7: Ablations on training strategies for ForceNet.

Model Rotation Weight on Validation Force MAE (eV/Å)
aug. fixed atoms ID OOD Ads. OOS Cat. OOD Both Average

ForceNet " 0.05 0.0313 0.0355 0.0334 0.0439 0.0360
ForceNet 0.05 0.0314 0.0359 0.0341 0.0448 0.0366
ForceNet " 1 0.0369 0.0411 0.0390 0.0506 0.0419
ForceNet " 0 0.0333 0.0385 0.0348 0.0465 0.0383

Full Results on ForceNet Designs First, we provide the full ablation results on ForceNet designs.
Table 5 shows the ablations on basis and activation functions, while Table 6 shows the ablations on
the message passing architectures.

Overall, we see trends that are consistent with the averaged results in Figure 5 and Table 3. Specifically,
from Table 5, we see that the combination of spherical basis functions and the Swish activation results
in the best performance across the four validation sets. From Table 6, we see that the conditional
filter convolution design gives superior performance compared to the more simplified architectures,
except for (6) and (7), in which the performance is comparable.

Full Results on Training Strategies Next, we provide the full ablation results of our training
strategies, fixing the model architecture to the default ForceNet.

The results are shown in Table 7. First, we see that rotation augmentation helps, especially for the
three out-of-distribution validation sets. Second, we see that providing small reweighted supervision
on fixed atoms is also helpful, significantly improving the validation performance (evaluated on free
atoms) compared to the two baseline strategies: (1) uniform loss weighting (equally weighting the
losses for fixed and free atoms) and (2) zero-loss weighting (ignoring losses on fixed atoms during
training).

H STRUCTURE RELAXATION SIMULATION RESULTS

Here we apply ForceNet to the IS2RS (Initial Structure to Relaxed Structure) task. The goal is to
predict the relaxed structure, i.e., 3D structure with zero-forces on all free atoms, from the initial
structure. This can be achieved by simulating a relaxation trajectory: iteratively updating the atomic
positions of free atoms according to their predicted forces until convergence, i.e., the predicted forces
are below a pre-specified threshold.

Specifically, the structure relaxations are performed using a PyTorch implementation of the Atomic
Simulation Environment’s (ASE) (Hjo, 2017) L-BFGS optimizer. Relaxations were terminated when
a max-absolute per-atom force of 0.01 eV/Å or 200 simulation steps, whichever comes first. All
DFT calculations were performed in the Vienna Ab Initio Simulation Package (VASP) (Kresse &
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Figure 6: Comparison of IS2RS performance in terms of AFbT and ADwT averaged over the four
validation sets. The x-axis is the IS2RS inference time in GPU hours measured over 100K relaxations.

Hafner, 1994; Kresse & Furthmüller, 1996a;b). Both ASE and VASP are popular packages within the
computational chemistry and catalysis communities.

The performance on the IS2RS task is evaluated by the two standard metrics (Chanussot et al., 2020):
(1) Average Force below Threshold (AFbT), measuring whether the predicted relaxed structure
actually has small forces calculated by ground-truth DFT, and (2) Average Distance within Threshold
(ADwT), measuring the geometrical closeness between the predicted relaxed structure and ground-
truth relaxed structure. For both metrics, the higher, the better.

Figure 6 compares the performance of different models, while taking the inference efficiency into
account. The full results for all the validation sets are provided in Table 8. Here the inference time is
measured on a Tesla V100 Volta GPU, where we use the largest possible batch size for each model
and perform 100K relaxations. All the models are the same as Figure 1 and Table 2, originally trained
for the S2F task.

We see from Figure 6 (left) that in terms of AFbT, both ForceNet models outperform GNS and SchNet,
while the inference time of ForceNet, GNS and SchNet is comparable to each other. Compared to
DimeNet++, both ForceNet and ForceNet-large have lower AFbT. However, the inference of both
ForceNet models is much faster than that of DimeNet++ (5.4 times faster for ForceNet, and 2.2
times faster for ForceNet-large). Moreover, we see that there is still a room for ForceNet-large to
be further scaled up to give AFbT comparable to DimeNet++. Regarding ADwT, from Figure 6
(right), we see that ForceNet-large outperforms DimeNet++, while being 2.2 times faster in inference.
ForceNet-large is slightly worse than DimeNet++-large, but is 5.4 times faster in inference.

Overall, the above results are encouraging given the faster inference time of ForceNet compared
to DimeNet++. However, the results also suggest a potential limitation of ForceNet’s force-centric
approach: the superior performance of ForceNet-large over DimeNet++ in the S2F task (i.e., estimate
the forces of 3D structures along the simulation trajectory) does not directly translate into its superior
performance on the IS2RS simulation task. We deduce this is due to the compounding error problem
of the force-centric approach pointed out by the GNS work (Sanchez-Gonzalez et al., 2020), i.e.,
model’s prediction errors accumulate along the simulation trajectory, which forces the model to make
increasingly erroneous prediction over structures that are far away from the simulation trajectory. The
energy-centric models may suffer less from the problem since their built-in physical constraints allow
them to make more well-behaved force prediction over the off-trajectory structures, which eventually
leads to better simulation results despite the worse force prediction results.

Fortunately, OC20 additionally provides 94M off-trajectory structures obtained by either perturbing
the on-trajectory structures or performing molecular dynamics from relaxed structures (Chanussot
et al., 2020). We believe that these structures can be used to mitigate the compounding error problem
of the force-centric approach by robustifying its off-trajectory force prediction. In fact, the original
GNS work (Sanchez-Gonzalez et al., 2020) has demonstrated that training their force-centric models
on perturbed off-trajectory structures significantly reduces the compounding error, thereby improving
their simulation results. We leave this investigation to future work.
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Table 8: Full IS2RS results. Inference time is in GPU hours and measured over 100K relaxations.

Model Inference AFbT (%) ADwT (%)
time ID OOD Ads. OOD Cat. OOD Both Average ID OOD Ads. OOD Cat. OOD Both Average

GNS 74.3h 2.22 0.66 1.44 0.62 1.24 30.60 23.13 30.92 31.15 28.95
SchNet 54.1h 4.90 2.66 2.75 2.90 3.30 35.54 29.80 26.86 28.39 30.15
DimeNet++ 407.6h 17.41 14.41 14.19 14.55 15.14 48.75 45.19 48.59 53.14 48.92
DimeNet++-large 814.6h 24.22 20.40 20.13 20.31 21.27 52.45 48.47 50.98 54.82 51.68
ForceNet 75.1h 10.75 7.74 7.54 7.78 8.45 46.83 41.26 46.45 49.60 46.04
ForceNet-large 186.9h 14.77 12.23 12.16 11.46 12.66 50.59 45.16 49.80 52.94 49.62
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