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ABSTRACT

We present an approach for using machine learning to automatically discover a
physical law and associated properties of the system from real observations. We
trained a neural network-based architecture, whose structure corresponds to clas-
sical mechanics, to simulate the dynamics of our Solar System from 30 years of
observed trajectory data. We then used symbolic regression to extract a symbolic
formula for the force law, which our results show matches Newtonian gravity.
We find that by scaling the model’s predicted acceleration by a trainable scalar
variable, we could infer bodies’ (relative) masses despite that they were not ob-
servable in the data itself. Though “Newtonian” gravity has of course been known
since Newton, our approach did not require knowledge of this physical law, and
so our results serve as a proof of principle that our method can extract unknown
laws from observed data. This work takes a step towards using modern machine
learning tools beyond data processing and analysis, but automated scientific the-
ory formation and development.

1 INTRODUCTION

Recent advances in machine learning (ML) have been adopted by many scientific disciplines, from
particle physics to cosmology, to process and analyse vast sets of observations. However, there have
been relatively fewer applications of ML to a significant component of scientific discovery: theory
formation. Here we show how ML methods can exploit established scientific frameworks to discover
accurate physical laws and unobserved properties, in an analogous fashion to how scientists develop
theories and physical parameters consistent with observations.

Symbolic regression saw its first breakthrough in the sciences with the work of Bongard & Lipson
(2007); Schmidt & Lipson (2009), which resulted in the development of the genetic algorithm-based
software eureqa. This package is commercial, yet remains the most powerful general algorithm
capable of finding symbolic physical laws from data (including Lagrangians, Hamiltonians, repeated
sub-equations, and other techniques) without known constants or priors on the physical nature of the
system. Though we note a few recent exciting papers in this text, the long list of papers that cite this
work demonstrate the rich applications of symbolic regression.
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Regarding recent fundamental advances in search algorithms, examples include: Sahoo et al. (2018),
which uses gradient descent on a predefined equation up to some depth parametrized inside a neural
network; Kusner et al. (2017), which gradient descent on a latent embedding of an equation; Li
et al. (2019), a Monte Carlo Tree Search as a learned symbolic regression technique using a neural
network guide; and Udrescu & Tegmark (2020), which uses physical priors such as symmetry and
dimensional analysis. Brunton et al. (2016) propose SINDy, which targets PDEs, and uses a library-
based approach to equation discovery, optimizing sparsity on basis function coefficients using a
LASSO-like technique. This technique has evolved into a powerful Koopman theory-based approach
which learns linear operators for neural network-learned spatial or time coordinates (Lusch et al.,
2018; Lange et al., 2020). Other related PDE techniques include Both et al. (2019); Atkinson et al.
(2019); Rackauckas et al. (2020); Chen et al. (2020); Vaddireddy et al. (2020). Finally the method of
(Guimerà et al., 2020) develops a method for MCMC sampling in symbolic regression space. In this
work we use the method described in Cranmer et al. (2020a), which extends symbolic regression to
high-dimensional input such as graphs by using a neural network as a proxy model.

There are also many examples of symbolic regression being applied to specific problems in sciences.
A few astronomy-related examples include Graham et al. (2012; 2013), who were the first to apply
the approach to the field, and more recently such works as Wadekar et al. (2020), which shares the
software package PySR (Cranmer, 2020b).

Our approach is based on the framework introduced by (Cranmer et al., 2019; Cranmer et al., 2020a),
which used a combination of graph networks (GN) (Battaglia et al., 2018) and symbolic regression.
The key principle is that the “edge function” within the GN has a loose correspondence to forces
in classical mechanics, and so if trained with the correct regularization, the GN’s edge function
neural network will tend to become equal to the forces, and can be isolated and interpreted using
symbolic regression (Cranmer et al. 2020a show that analogous correspondences between Hamilto-
nians can also be exploited for symbolic formula discovery.). By training a GN to simulate orbital
dynamics from real data, we were able to extract the edge function and correctly infer the formula
for Newtonian gravitation. We also structured the GN-based simulator to predict accelerations by
multiplying the model output by a scalar variable fit during training (corresponding to force = mass
× acceleration) and found the learned scalars were proportion to the orbital bodies’ true masses.

2 APPROACH

Our two-step approach—training a GN-based simulator, then using symbolic regression to find an-
alytical formulae for forces—is summarized in Fig. 1. The data on which the GN is trained consists
of the positions and velocities of orbital bodies. We convert this data into distances between each
pair of bodies di,j , which are the input to our neural network (NN), and the acceleration per body
ai, which serves as output. Each node is assigned a scalar property vi. This initial setup is shown in
the left of Fig. 1. Our NN then uses the GN formulation to calculate two body interactions Fi,j as a
function of the distances and input quantities. The loss function is calculated by summing over all
interactions for each body, and dividing by 10vi to predict an acceleration, motivated by F = ma.
The loss function is then obtained by comparing this predicted acceleration and the observed one.
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Figure 1: The input is a GN with given distances as edges, and nodes with learnable scalar prop-
erties. The GN updates the edges of this graph to compute forces. We then sum over all forces
acting on each body (notice that we are assuming that Fi,j = −Fj,i) and divided by the nodes, to
get accelerations. The loss function is obtained by comparing this predicted acceleration and the
true acceleration. The function that the GN learned to update the edges is also used to recover an
algebraic force using a symbolic regression algorithm.
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Figure 2: Left: data from the bodies of the inner Solar System. Right: same bodies evolved from
same initial conditions using the learned interaction.

The two body interactions learned by the NN as a function of distance and node properties, are used
for symbolic regression, with the aim of recovering Newton’s formula for the gravitational force.

This structure is also similar to the one used in Cranmer et al. (2019). The main differences are
that we enforce that the acceleration is given as the sum of the interactions divided by the node,
while Cranmer et al. (2019) use a second MLP to calculate node updates; and that instead of taking
the masses as input data, we attempt to learn them as these node properties vi. This is important for
our approach, where we are trying to learn from observed data, as the masses are not observed, but
can possible be inferred from orbits assuming Newtonian gravity.

3 METHODS

Data: We use Solar System data from NASA’s HORIZONS On-Line Ephemerys Sys-
tem1 (Giorgini et al., 1996; 2001). We extract orbits for the Sun, all planets, and the moons that
have a mass above 1018M�. Whilst more bodies could have been considered, their gravitational
influence is negligible, therefore we do not expect that their omission will affect our results. A full
list of bodies can be found in Tab. 1. In total, our problem consists of 31 bodies. We use data
from January 1980 to January 2013 with a time step of 30 minutes, and use the first 30 years of
data (approximately one full orbit of Saturn) for training, and the last three for validation. From the
HORIZONS interface, we extract positions and velocities in Cartesian coordinates, with the Solar
System barycenter as the reference frame.

From this data, we extract the pair-wise distance vectors between bodies and each body’s accelera-
tion vector (calculated from changes in the velocities) at every step. Relative distances serve as the
input to our model, meaning that our model is blind to a translation of the reference frame. The
accelerations serve as the truth for our model training.

Graph Network (GN): A GN is a type of neural network that act on graphs, a 3-tuple formed
of three components2: Nodes V = {vi}i=1:Nv , a number Nv of attribute vectors, each of length
Lv; Edges: E = {(ek, rk, sk)}k=1:Ne , Ne vectors each of length Le and connecting two nodes, a
sender sk and a receiver rk; and a single Global: u ∈ RLu

vector of length Lu.

Learned simulators based on GNs are able to model very complex particle and mesh sys-
tems Sanchez-Gonzalez et al. (2020); Pfaff et al. (2020), but have not been used to learn to simulate
real data until now. Here, the input graph’s nodes represent orbital bodies, and edges represent pos-
sible physical interactions between them. Our input graph has Nv = 31 nodes, which are trainable
scalars Lv = 1. It has a single edge connecting every pair of bodies Ne = Nv(Nv − 1)/2 = 465,
which has length Le = 3 and is given by the distances between bodies. We do not use any global
attributes. Our GN calculates a message function between every pair of bodies, that depends on the
node and edge attributes: φe(ek,vrk ,vsk), which is then used to update edge attributes. We then

1http://ssd.jpl.nasa.gov/?horizons
2This discussion follows the notation of (Battaglia et al., 2018).
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take the sum over all incoming and outgoing edges for each body, which gives us the force acting
on each body. By dividing this by the exponential of the node attribute, we obtain a predicted accel-
eration. The reason we take the exponential of the node attribute, instead of the attribute itself, is to
allow for this attribute to have values of largely varying magnitudes for all bodies by being learned
in a log scale. This structure is very similar to an interaction network (Battaglia et al., 2016), with
the main exception that the edge updates used both sender and receiver nodes, given that we want to
impose the symmetry Fj,k = −Fk,j . Specific details about out NN can be found in Appendix A.

Symbolic Regression: Extracting a mathematical formula from input and output data, is a chal-
lenging problem due to the vast space of possible expression, and the necessity to fit optimal numer-
ical parameters for each expression (Davidson et al., 2003). Despite recent advances in algorithms
as outlined above, trying to learn physics using symbolic regression directly in the data is gener-
ally inefficient, and becomes computationally unfeasible once the data becomes large and complex.
Thus, following (Cranmer et al., 2020a), our work uses GNs to learn the interaction from the data,
and symbolic regression to extract a mathematical expression from the GN model.

We use the package PySR (Cranmer, 2020b)3, which builds on the eureqa package (Schmidt &
Lipson, 2009) but has several advantages, such as its efficiency, a python wrapper which makes it
easily integrated with the rest of the code used in this work, and being open software.

We use the GNs model described above on validation data, to extract the force for different positions
of the bodies. Each time step is randomly rotated for data augmentation. For our symbolic regres-
sion, we select 1000 of these points, each of which contains the distances between two randomly
chosen bodies, the scalar quantities learned by the model for each body, and the three components
of the force between them. We then perform symbolic regression for each component of the force,
where the input variables are the scalar quantities learned by the model, the three components of the
distance vector, and its norm. The allowed operators between these input quantities are addition,
subtraction, multiplication and division.

Innovative aspects : While the approach of this paper is similar to that introduced in (Cranmer
et al., 2019; Cranmer et al., 2020a), there are some important differences, mainly derived from the
fact that we are using real data, which introduces complications that are not present when using
simulations. The main difference with previous work is our attempt to learn the masses through the
scalar properties vi. This allows our algorithm to learn the physical data using only the data that
is available to it through direct observations, i.e. the orbits of the bodies. To learn the masses, we
had to enforce force = mass × acceleration. The reason to do this is that, if this is not imposed and
instead we use a second MLP to go from force to acceleration, our first MLP can learn an arbitrary
function of the mass, and the second MLP undoes that transformation. Indeed, when trying this, we
found that the graph network obtains a similarly good fit to the data, but the learned scalar properties
no longer resemble the masses, and therefore symbolic regression no longer recovers the expected
result. We will study this in more detail in future work.

The other main difference with previous work is the use of data of varying orders of magnitude. This
is a common feature of real data, especially astronomical data, that is rarely modelled in simulations.
In our problem, accelerations, masses and distances have severe order of magnitude differences. If
ignored, these differences lead to an algorithm that only attempts to model the bodies with the
largest accelerations, and considers the rest as just a small perturbation; or even worse to infinite
gradients. We took several measures to prevent this, mainly a loss function that is weighted by
the true acceleration; and working in spherical coordinates, using the logarithm of the magnitudes.
More details about this can be found in Appendix A.

Finally, to take full advantage of the limited data available, and to circumvent the issue that our data
does not contain a full orbit for the slowest planets (Uranus and Neptune) which could lead to a bias
in the training, we randomly rotated our coordinate frame at each point during training. This served
not only to avoid bias during training, but also as a data augmentation method.

3https://github.com/MilesCranmer/pysr
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4 RESULTS

Our MLP successfully finds an interaction between bodies that matches the observed acceleration,
with a loss of 0.0541 calculated from Eq. (2). This shows that GNs can learn interactions not only
from simulations, but also from real data. The interaction learned by our algorithm is shown in
comparison with the real data in Fig. 2.

The scalar properties vi learned by our MLP, which are learned during training and multiplied by
the forces to compute the accelerations, are shown in Fig. 3 along with the masses per body. We
find that most of them agree within 10%, the exception being planets such as Mercury and Venus,
which are planets that have little effect on the Sun’s acceleration due to their low masses and their
lack of satellites, or moons such as Hyperion, Nereid, or Phoebe, where again a low mass means
that they barely affect the planet that they are orbiting. Far from being discouraging, this reinforces
our belief that the algorithm is working correctly. Following the equivalence principle, the mass of
bodies that lack significant gravitational influence on other bodies in the system is irrelevant to the
problem, which is why our MLP fails to learn these masses. From comparison in Fig. 3, we can
clearly interpret these learned scalar quantities as learned masses of the bodies.

When applying the symbolic regression we recover Newton’s law of gravity, including the values of
the scalars vi which following Fig. 3 we now interpret as the logarithm of learned masses:

~F = −GlearnedM1M2

r3
~r, (1)

where Glearned = 2.88 × 10−4 AU3 ·M−1� · day−2. Our algortithm learns a gravitational constant
that is very similar to the true one: G = 2.96 × 10−4 AU3 ·M−1� · day−2. It is important to point
out that all these quantities require an overall calibration, that in our case is the mass of the Sun;
i.e. both the masses and the gravitational constant have been learned relative to the mass of the Sun.
This is not specific to our approach, and is in fact a feature of the data, the only way to break this
degeneracy is with laboratory experiments (Cavendish, 1798; Gillies, 1997).

5 CONCLUSIONS

Our results show that our two-step approach—training a neural network simulator with physical
inductive biases, then interpreting what it has learned using symbolic regression—is a viable tool
for discovering physical laws from real observations. We (re-)discovered Newton’s formula for
gravitational force from observed trajectories of the sun, planets, and moons of our Solar System,
as well as their relative masses. Even though the law we discovered is already known of course, the
purpose of this work is to confirm that known laws are discoverable with our method. This is a key
step toward building more sophisticated tools for automating the process of scientific discovery, in
particular data-driven theory formation and evaluation.
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A NEURAL NETWORK

The GN uses a TensorFlow (Abadi et al., 2015) model with three multilayer perceptrons (MLPs)
with 128 hidden nodes per layer. Furthermore, our model has the followng:

• Activation function: We use a hyperbolic tangent ’tanh’ activation function. While this
is slower than the very commonly used Rectified Linear Unit (ReLU) activation func-
tion (Agarap, 2018), our problem is very susceptible to the dying ReLU problem (Lu et al.,
2019) due to the very different values of both inputs and outputs.

• Loss function: For the loss function, we use the relative mean weighted error:

Loss =
∑ (

apred − atrue
)2

(atrue)
2 . (2)

The reason we use the relative mean weighted error is to make sure the NN tries to fit the
orbits of all bodies considered, not only the ones with the largest acceleration.

• Spherical coordinates: Our NN takes as inputs a 3-vector for every pair of bodies repre-
senting the distances, and outputs a second three vector representing the force. However,
due to the large variation in the magnitude of the inputs, we transform the input distance
from Cartesian into spherical coordinates, and then use the base-ten logarithm of the mag-
nitude, as well as the two angular coordinates, as inputs. Similarly, the output force is
transformed from base ten logarithm and angular coordinates back into Cartesian, as this
allows the NN to learn forces of very different magnitudes.

• Data augmentation: During training, a random three-dimensional rotation is applied to
every point. This serves as a data augmentation technique, and also as a way to prevent a
bias in the learning as some of the bodies with the largest orbital period do not complete an
entire orbit in the thirty years that are used as training data.

• Training noise:: During training, we corrupted the input states with Gaussian noise to
improve the model’s robustness to error over long rollouts at test time. This technique has
been used widely in GNN-based learned simulators Sanchez-Gonzalez et al. (2020); Pfaff
et al. (2020): it is believed to help the model close the gap between the distribution of
training input states, which are always from the true observations, and rollout input states,
which are predicted by the model.

• Early stopping: We stop training after 20 steps with no improvement in the validation loss,
to prevent overfitting.

B LEARNED MASSES

The exact values for the learned and true masses are shown graphically in Fig. 3, can be found
in Tab. 1
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Name log10M/M� vk − v0 Name log10M/M� vk − v0
Mercury -6.78 -10.05 Rhea -8.94 -9.36
Venus -5.61 -9.60 Titan -7.17 -7.25
Earth -5.52 -5.50 Hyperion -11.55 -8.54
Moon -7.43 -8.29 Iapetus -9.04 -7.66
Mars -6.49 -8.99 Phoebe -11.38 -6.42
Jupiter -3.02 -3.03 Uranus -4.36 -4.35
Io -7.35 -7.30 Ariel -9.20 -9.23
Europa -7.62 -7.72 Umbriel -9.19 -9.14
Ganymede -7.13 -7.32 Titania -8.77 -8.75
Callisto -7.27 -7.75 Oberon -8.81 -8.77
Saturn -3.54 -3.55 Miranda -10.49 -10.51
Mimas -10.72 -10.40 Neptune -4.29 -4.29
Enceladus -10.27 -10.27 Triton -7.97 -7.97
Tethys -9.51 -9.98 Nereid -10.81 -7.52
Dione -9.26 -9.41 Proteus -10.66 -10.60

Table 1: The true masses of the Solar System bodies considered in this problem, and the scalar
quantities learned by our GN. We subtract by v0, as we can pick an overall normalization, equivalent
to choosing units.
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