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ABSTRACT

In recent years neural networks have been identified as candidates for fast partial
differential equation (PDE) solvers, leading to numerous approaches to designing
network layers that attempt to go beyond the usual convolution-based way of
working with multi-dimensional data. We take a neural architecture search (NAS)
inspired approach, introducing a relaxed space of neural operations that contains
numerous types of layers including multi-channel convolutions and the recent
state-of-the-art Fourier Neural Operators (FNOs) of Li et al. (2021b). To do so
we exploit the fact that many operations of interest are linear maps diagonalized
by efficient matrices such as the discrete Fourier transform (DFT); allowing these
matrices to vary as additional “architecture parameters” of the model yields our
Expressive Diagonalization (XD) operations. Empirically, we demonstrate that
XD-operations outperform FNOs using a similar network across multiple problem
settings while using fewer parameters in the case of 2d and 3d domains.

1 INTRODUCTION

PDE solvers are used for a broad range of scientific and engineering problems that require a large
number of solver evaluations at different initial conditions with a high discretization resolution, which
can be slow when using traditional numerical methods. Deep neural network-based PDE solvers have
emerged as orders-of-magnitude faster alternatives to traditional numerical solvers trained to map
initial conditions to solutions using datasets of solutions generated by numerical solvers. However,
baseline neural approaches such as convolutional neural networks (CNNs) perform poorly, which has
led to the development of better parameterized layers specialized for this problem (Li et al., 2021b).

In this paper we approach the design of such operations from the perspective of neural architecture
search (NAS). While we leave a thorough overview of the field to a survey (Elsken et al., 2019), the
principle task of a NAS algorithm is to assign operations to edges in a computational graph to define
a neural network. Usually this involves choosing one of a small number of operations, e.g. different
types of convolution or pooling layers, for each edge. In recent years, NAS algorithms have relaxed
this discrete search problem into a continuous one in which “architecture parameters” interpolating
between different operations are updated using gradient-based methods (Liu et al., 2019).

We propose a different type of relaxation between operations based around the key insight that many
operations consist of multiple channels that apply weights w to inputs x by computing

K diag(Lw)Mx (1)

where the fixed matrices K, L, and M are efficient (to represent and apply) and shared across
channels. In particular, setting L and M to be the DFT and K to be its inverse yields the convolution,
while doing the same except setting L to be the bit-reversal permutation instead results in the FNO.
Thus all we need to interpolate between them is a continuous family of efficient matrices containing
both permutations and DFTs, for which we use the Kaleidoscope or K-matrix family of Dao et al.
(2020). Replacing all three matrices above by K-matrices yields our Expressive Diagonalization
(XD) operations, which we show enjoy the following theoretical and empirical properties:

• XD-operations can be represented and applied in time log-linear in the input size.
• The set of XD-operations contains several operations of interest for neural PDE-solvers: con-

volutions, FNOs, and graph convolutions (GCNs) (Kipf & Welling, 2017). This is achieved by
setting the architecture parameters K, L, and M appropriately, which means we can initialize

1



Published as a workshop paper at ICLR 2021 SimDL Workshop

or “warm-start” the optimization of our model using one of these operations. This also means
XD-operations can be substituted into any standard CNN backbone with minimal tuning.

• Using the experimental setup and network topology of Li et al. (2021b), we show that XD-
operations warm-started with convolutions achieve lower loss than their FNO operations on three
different problems—Burgers’ equation, Darcy Flow, and Navier-Stokes—each with a different
input dimension. While our computational cost is higher, in most settings we use fewer parameters.

• We find that warm-starting with FNOs also outperforms their result but by a smaller margin,
suggesting that XD-operations learn fundamentally distinct operations. On the other hand, XD-
operations do share the FNO property of performing consistently well across resolutions.

We have made our code implementing XD-operations and reproducing these results publicly avail-
able1. We relegate experimental details to the supplementary material.

2 RELATED WORK

Many deep neural network architectures used in neural PDE solvers include convolutional layers,
which outperform architectures comprising only dense layers, but perform worse as the resolution of
the generated PDE solutions is increased (Zhu & Zabaras, 2018; Li et al., 2021b). Other approaches
based on graph neural networks have been proposed (Li et al., 2020b;a). The recently introduced
Fourier Neural Operator (FNO) of Li et al. (2021b) achieves state-of-the-art error among neural PDE
solvers without suffering from drops in performance at different resolutions.

Several papers have generalized the DFT to replace layers in deep networks (Dao et al., 2019;
Alizadeh vahid et al., 2020; Ailon et al., 2020), including the one whose K-matrices we apply Dao
et al. (2020). These works focus on replacing linear layers in deep nets to speed up or add structure
to models while reducing expressivity. In contrast, we can replace convolutions and other types
of layers while increasing expressivity by extending their diagonalization using K-matrices. Note
that K-matrices on their own can represent all functions returned by XD-operations, as they contain
all efficient linear transforms, However, if both the input dimension N and filter size are > 1, as
in most applications, then the only known way is to apply K-matrices directly to flattened inputs
x ∈ RnN

, yielding much worse description length O(nN log n). In contrast, our diagonalization
approach allows the use of Kronecker products to apply DFTs to each dimension separately, yielding
description length O(n log n). It is thus the first (and in some sense, “right”) method to use such
matrices as replacements for convolutions. Furthermore, diagonalization allows us to separate model
weights w from architecture parameters α, letting the former vary across channels while fixing the
latter.

3 THE EXPRESSIVE DIAGONALIZATION RELAXATION

CNNs are often the first model tried by scientists faced with multi-dimensional arrays over a regular
grid (LeCun et al., 1999), including both images and the initial conditions of a PDE. However, in
the latter case their performance as a PDE solver has been found to be subpar, even over rectangular
meshes, leading to the design of better-performing operations (Li et al., 2021b). The main contribution
of this work is the construction of a set of operations called XD-operations that generalize the
convolution and can be used to obtain high-quality models for this problem. While for brevity we do
not expand significantly upon the connection to architecture search, for notational convenience we
will formally call an operation any mapping Opα : W 7→ F from a parameter space W to a space
F = {Opa(w) : X 7→ Y} of parameterized function from input space X to output space Y . Here
α corresponds to an architecture parameter specifying how to apply the weights w to the input; in
the simplest case it could just be binary indicator saying e.g. to use convolution if α = 1 and to use
average pooling otherwise. Modern architecture search methods often treat architecture parameters
as simply additional model parameters that require special treatment in terms of optimization (Li
et al., 2021a), which is also the approach we will take.

The starting point of our construction of XD-operations is the convolution’s efficient diagonalization
by the DFT. Formally, if Aw ∈ Rn2×n2

is the matrix representing a 2d convolution with filter

1https://github.com/nick11roberts/xd
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w ∈ Rk of kernel size k ∈ [n]2, then for any 2d input x ∈ Rn2

we have

Conv(w)(x) = Awx = F−1 diag (Fw)Fx (2)

Here [n] = {1, . . . , n}, diag(z) denotes the diagonal matrix with nonzero entries z, w ∈ Rn2

is an
appropriate zero-padding of w ∈ Rk, and F ∈ Cn2×n2

is the 2d DFT (a Kronecker product of two
1d DFTs). This diagonalization explicates both the convolution, as both the DFT and its inverse
can be applied in time O(n log n) and represented with O(n log n) bits. It also suggests a natural
way to generalize the convolution while preserving these efficiencies: simply replace the Fourier
matrices F and F−1 in equation 2 by a more general family of efficient matrices. Doing so yields the
single-channel version of our XD-operations:

XD1
α(w)(x) = Real (Kdiag (Lw)Mx) (3)

Here the architecture parameter α = (K,L,M) determines the exact matrices used to replace F and
F−1 in Equation 2. As in convolutions, the multi-channel extension of this is straightforward.

The main remaining question is the family of efficient matrices to use, i.e. the domain of the archi-
tecture parameters K, L, and M. For this we turn to the Kaleidoscope matrices, or K-matrices, of
Dao et al. (2020), which generalize F and F−1 to include all computationally efficient linear trans-
forms with short description length. This includes important examples, such as sparse matrices and
permutations, that add significant expressivity to the DFT. To obtain this general family, K-matrices
allow the DFT’s butterfly factors—matrices whose products yield its efficient implementation—to
take on different values. While a detailed construction of K-matrices can be found in the original
paper, we need only the following useful properties: they are as (asymptotically) efficient to apply
and represent as DFTs, they are differentiable and can thus be updated using gradient-based methods,
and they can be composed (made “deeper”) to make more expressive K-matrices.

Specifying that K, L, and M in Equation 3 are K-matrices largely completes our core contribution: a
set of operations with K-matrix architecture parameters. We now describe two key properties of these
XD-operations, as well as how we apply them in practice.

3.1 PROPERTIES OF XD-OPERATIONS

Complexity: XD1
α requires three K-matrices and O(1) filter weights to represent, which implies

description length O(n log n); this is more than a convolution (which has no architecture parameters)
but is not quadratic like a linear layer. Applying XD1

α requires multiplication by three K-matrices,
yielding a per-channel time complexity of O(n log n). This matches the efficiency of convolutions.

Expressivity: a key aspect of XD-operations is that, for specific settings of the architecture param-
eters, they contain several operations of interest for solving PDEs: convolutions, FNOs (Li et al.,
2021b), and GCNs (Kipf & Welling, 2017). As discussed above, convolutions can simply be obtained
by setting L and M to be the DFT matrix and K to be its inverse. If we allow the model weights
W to be complex, FNOs are also straightforward; simply set K and M as for convolutions and L to
be the bit-reversal permutation,2 which is an efficient operation contained in the set of K-matrices.
Perhaps the most interesting result is for GCNs, which consist of multiplication by a sparse matrix
A derived from the adjacency matrix followed by a pointwise convolution;3 thus to express it as an
XD-operation we can set K and L as for convolutions and M to be the DFT multiplied by A.

3.2 APPLYING XD-OPERATIONS

Warm-starting: the major benefit of the expressivity of XD-operations is that we can initialize, or
warm-start, our optimization procedure using these named operations; in particular, by setting the
architecture parameters K, L, and M appropriately and using the same random initialization for
model weights we can use any existing CNN backbone as a starting network. In this work we will
specifically use the ResNet-like architecture of Li et al. (2021b).

Optimization: as discussed previously, we view architecture parameters α as additional model
parameters that may require separate treatment during training; specifically we tune the step-size

2We view the DFT as not including bit-reversal; if it does then we can simply set L to be the identity.
3Note that our results only holds for fixed graphs, as in the case of PDE solvers over fixed meshes.
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Figure 1: (a) and (b) Relative error on Burgers’ equation and Darcy Flow across different resolutions,
including all those considered by Li et al. (2021b).

Table 1: Relative test error on the 2d
Navier-Stokes equations at two different
settings of the viscosity ν and number of
time steps T . Best results in each setting
are bolded.

ν = 10−4 ν = 10−5

Method T = 30 T = 20

CNN-3d 0.325 0.278backbone
FNO-3d 0.182 0.177(reproduced)
CNN-3d 0.172 0.168backbone XD
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Darcy Flow (resolution = 106)
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Figure 2: Training curves (dotted) and test curves (solid)
on Darcy Flow.

and momentum of stochastic gradient descent. Meanwhile, to train the model weights w we simply
use the same optimizer as Li et al. (2021b) with no further tuning. These algorithms are run
simultaneously as a single optimization routine. This simple procedure distinguishes our work from
standard architecture search, with its more involved multi-stage search protocols (Yang et al., 2020).

4 EMPIRICAL RESULTS

For our empirical evaluation we evaluate using the setting of Li et al. (2021b), data generated
by classical PDE solvers is used to learn functions from some initial condition or setting to the
corresponding PDE solution, with the goal of replacing the solver by a deep net forward pass; the
latter can be orders of magnitude faster. The three PDEs they study are the Burgers’ equation, Darcy
Flow, and the 2d Navier-Stokes equations, which involve 1d, 2d, and 3d data, respectively. The first
two are studied across multiple resolutions, while the last one is studied at different viscosities.

Our first approach here is to take a simple CNN backbone—the type a scientist might use in a
first attempt at a solution—and replace all convolutions by XD-operations. As a baseline, we hope
to do better than this backbone; ambitiously (since we are initializing with the under-performing
convolution), we hope to compete with the custom-designed FNO. The specific CNN we use is
simply the FNO architecture of the appropriate dimension N from Li et al. (2021b) but with all
N -dimensional FNOs replaced by N -dimensional convolutions; this performs similarly to their
CNN baselines. We further compare these to the performance of XD initialized as the FNO-1d or
FNO-2d architectures for the respective 1d or 2d problems. In all cases we only compare to the CNN
backbone and our reproduction of the FNO results, as the latter exceeds all other neural methods; a
complete results table is provided in the appendix. Our reproduction of FNO is slightly worse than
their reported numbers for Burgers’ equation and slightly better in the other two settings. Lastly, note
that on the Navier-Stokes equations we only compare to the 3d FNO on the two settings in which we
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Table 2: Test relative errors on the 1d Burgers’ equation. We were not able to match the
FNO-1d results reported by Li et al. (2021b) using their published codebase, however, our
proposed XD operations outperform our reproduction of their results at every resolution.
Furthermore, we outperform their reported test relative errors on every resolution except
s = 4096, where we roughly match their performance.

Method (source) s = 256 512 1024 2048 4096 8192
FNO-1d (Li et al., 2021b) 0.0149 0.0158 0.0160 0.0146 0.0142 0.0139
CNN backbone (ours) 0.0518 0.1220 0.1830 0.2280 0.2730 0.2970
FNO-1d (reproduced) 0.0181 0.0191 0.0188 0.0184 0.0183 0.0183
CNN backbone XD (ours) 0.0141 0.0079 0.0154 0.0099 0.0145 0.0123
FNO-1d XD (ours) 0.0153 0.0154 0.0154 0.0167 0.0160 0.0155

were able to reproduce their approach; moreover, we do not compare to their use of a 2d FNO plus a
recurrent net in time, but in-principle XD-operations can also be used for the latter.

We report our results for the Burger’s equation and Darcy Flow in Figure 1; for 2d Navier-Stokes
the results are in Table 1. In all cases XD-operations dramatically outperform the N -dimensional
CNN backbone used to warm-start them; furthermore, we also achieve better error than the FNO.
As exemplified in Figure 2, despite having a higher train loss than FNO, XD-operations seem to
generalize better. Notably, Figure 1 also shows that XD-operations perform consistently well across
different resolutions, a major advantage of FNOs over previous methods, whose performance was
tightly coupled to the discretization (Li et al., 2021b). In particular, note that CNN performance
worsens with increasing resolution, whereas that of XD and FNO does not.

As a further investigation, we attempt to warm-start XD-operations using exactly the network
and operations of Li et al. (2021b); this is made possible by our expressivity results. Perhaps
surprisingly, Figure 1 shows that while FNO-initialized XD-operations indeed outperform FNO, CNN-
initialized XD-operations outperform FNO by an even larger margin, despite the poor performance
of convolutions without XD. This suggests the operations learned when warm-starting with a CNN is
substantially different than FNO, which itself means that it may be fruitful to combine the two. We
present additional details in Table 2 and Table 3. For comparisons to the baselines considered by Li
et al. (2021b), see the supplementary material.

Table 3: Test relative errors on 2d Darcy Flow. Our reproduction of the FNO-2d
results outperform those reported by Li et al. (2021b). Nonetheless, our proposed
XD operations outperform both our reproduction and the reported results of Li et al.
(2021b) at every resolution.

Method (source) s = 85 s = 106 s = 141 s = 211 s = 421
FNO-2d (Li et al., 2021b) 0.0108 - 0.0109 0.0109 0.0098
CNN backbone (ours) 0.0404 0.0495 0.0613 0.0813 0.1150
FNO-2d (reproduced) 0.0096 0.0092 0.0091 0.0091 0.0091
CNN backbone XD (ours) 0.0065 0.0065 0.0065 0.0071 0.0066
FNO-2d XD (ours) 0.0082 0.0079 0.0077 0.0076 -

5 CONCLUSION

Our work demonstrates that our new class of XD-operations yields accurate PDE solvers in several
settings and opens up several directions for future work. In particular, our results do come at a cost of
slower training and inference; XD-operations are roughly an order of magnitude slower than FNOs,
despite having fewer parameters in 2d and 3d. However, this still yields approximate PDE solvers
that are one-to-two orders of magnitude faster than classical approaches, maintaining the usefulness
of these results for the problem. We have identified several directions for ameliorating this, including
a smarter treatment of padding w and investigating the usefulness of varying individual architecture
parameters. Other future work involves investigating how XD can handle other desirable aspects such
as transfer to different grids and adaptivity to irregular meshes; here combining or warm-starting with
FNOs or GCNs may prove useful.
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