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ABSTRACT

Machine learning (ML) force field models for molecular dynamics (MD) sim-
ulations often suffer from poor system stability with instabilities such as atom
clustering that must be corrected by active learning approaches. However, the
correlation between the structural and chemical complexity of a multi-component
systems and the robustness of long-time ML-based MD dynamics has not been
studied in detail. We develop graph neural network (GNN) model for SiC and
GeSe2 systems to perform classical MD simulations with quantum mechanical
accuracy. A GNN model is sufficient to ensure robust long-time dynamics in a
‘simple’ system like SiC. However, we need additional inductive bias, in the form
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of energy decomposition into 2-body and 3-body terms to generate stable MD
trajectories for complex GeSe2 systems, which can exist in multiple metastable
atomic configurations.

1 INTRODUCTION

The accelerated discovery of new materials with novel properties requires atomic-level information
about phenomena such as chemical reaction, phase transformation and mechanical deformation.
Ab-initio molecular dynamics (AIMD) simulations Car & Parrinello (1985) follow the trajectory
of atoms by computing interatomic forces quantum-mechanically within the Density Functional
Theory framework under Born-Oppenheimer approximation. Such AIMD forces are highly accurate
but computationally expensive and scale asO(N3) with the number of electrons. Due to this serious
limitation, it is not possible to study systems larger than a few hundred atoms (about 1,000 electrons)
for a few pico-seconds with AIMD.

Classical molecular dynamics (CMD) Rahman (1964) with finite-range forces can perform realis-
tic simulations of materials and processes at micron length and micro-second time scales, since it
scales linearly with the number of atoms. Interatomic interactions in CMD are modeled using an
empirical force field where the parameters are fitted to match experimental values such as energy,
bulk modulus, equation of state, or other AIMD computed properties. However, designing a high
quality force field is non-trivial and materials specific and requires a detailed a priori understanding
of atomic structure and chemical and physical processes of the material under consideration.

Recently, machine learning methods have made good progress in designing black-box force fields
for classical MD at AIMD level accuracy, that does not depend on hand designed functional form
of potential energy. These machine learning (ML) force field are represented using neural network
(NN) or Gaussian process (GAP) models and are trained using data sampled from AIMD trajectory.
These ML force field models can be further divided into groups, which are descriptor-based and
message-passing based models. In descriptor-based models, each atom’s feature vector is specifi-
cally designed to contain information about its local environment within a certain cutoff distance,
which is then feed into a NN/GAP model to predict total potential energy of N-particle system. Force
field models in Refs. Behler & Parrinello (2007); Bartok et al. (2010) are examples of descriptor-
based models. On the other hand, message-passing models perform end-to-end learning of both the
atomic feature and the potential energy function directly from input Cartesian coordinates of atoms
and their nuclear charges. During training, these models use progressive message-passing operation
to learn environment dependent feature representation for each atom from its neighbors. Examples
of such models are Schütt et al. (2017a); Unke & Meuwly (2019); Schütt et al. (2017b)

ML models have shown success in learning force field for classical MD at AIMD level accuracy
on static training and test dataset, but demonstrate poor performance in MD in terms of system
stability. Instabilities in ML force fields manifest as clustering with atoms coming very close to
each other in long time MD simulation dynamics in the absence of external forces particularly for
multi-component systems such as covalent solids. Active learning based strategy is commonly used
to overcome this instability during MD dynamics, which requires re-training every time the system
fails using these failed frames, Ang et al. (2021); Vandermause et al. (2020). However, to the best of
our knowledge no study has analyzed the correlation between the structural and chemical complexity
of multi-component material system with the robustness of long-time dynamics by ML force fields.

In this work, we have designed an end-to-end model for classical MD simulation of multi-component
material system that combines a graph-neural network (GNN),Battaglia et al. (2018), to capture
long range interaction between atoms and a multi-layer perceptron layer to model two-body and
three-body interaction at short distance. We consider these two-body and three-body interaction as
inductive bias of the model, which is system specific and quantifies the complexity of the simulated
systems. We have analyzed the performance of our models in terms of their stability in MD dynamics
on two different systems, which are silicon carbide (SiC) and germanium selenide (GeSe2). In
our scheme, SiC represents a ‘simple’ material system with a single stable crystal structure and
fixed coordinations and oxidation states for cations and anions. GeSe2 represents a more ‘complex’
material system, with multiple crystalline and amorphous metastable configurations and several non-
equivalent atomic positions and oxidation states for anions Gholipour (2019). We show that for
complex systems like GeSe2 decomposing total energy into two-body, three-body and GNN based
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many terms creates a model that has robust MD dynamics, whereas this energy decomposition is not
needed for simpler system like SiC, where a simple GNN model is sufficient.

2 METHOD

Figure 1: Schematic of the GNN architecture, which consists of (top) graph neural network for
many body interactions of atoms and (bottom) two-body and three-body terms to learn short range
interactions.

Figure 1 shows the architecture of our force field model, which consists of a graph neural net-
workEGNN and two fully-connected neural networks that captures two-bodyENN2

and three-body
ENN3

interaction at smaller distance. The total energy of a N -particle system is given in Eq. 1.
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where, j 6= k ∈ NNRc
, the neighbor list of atoms within in a cutoff distance Rc = 3 Å in ENN2

and ENN3
. We use a larger cutoff distance of RGNN (7 Å) > Rc to construct neighbor list for each

atom in the GNN layer. R2
ij is the squared distance between atom pairs, which is also taken as initial

edge feature in the GNN layer whereas initial node is represented by atom type.

The GNN architecture consists of node and edge embedding layers, which creates 32 dimension
embedding vector for each node and edge, respectively. This node and edge embedding is feed into
a GNN layer along with the neighbor list of each node (atoms). The GNN layer that consists of edge
and node convolution layers and learns environment dependent feature representation of each atoms
using three message passing operation that alternates between node and edge convolution. Finally,
the learned node features are feed into a decoder (a fully connected neural network) which predicts
per atom energy EGNN,i that is summed to get total energy of system as EGNN =

∑
iEGNN,i.

Here, ENN2 andENN3 are only needed for complex system, whereas for simpler system GNN layer
is sufficient to design a model that has robust MD dynamics. For systems that contains EGNN ,
ENN2

and ENN3
terms, we follow a hierarchical training strategy by training NN2, NN3 and GNN

in that order. Further, we use different network of ENN2
and ENN3

for each bond type, ie, 6
networks in a two component system. Using the AIMD data, we first train the ENN2

and ENN3

terms followed by fixing the parameters of these two terms and training only EGNN to capture
the remaining many-body interaction. Our proposed strategy is inspired from empirical force field
design for classical MD simulation that uses decomposition of energy into multiple terms but unlike
those models we don’t assume any functional form for energy decomposition terms and instead
represent them using neural network. We use the loss function in Equation 2 during training.
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where, M is the batch size and Ni is the total number of atoms in a system. Atomic forces are
computed by taking derivative of predicted energy with respect to input atomic coordinate as Fjk =

− ∂E
∂Rjk

, where k = 1, 3 represents x, y and z direction.

Using the trained model, we perform MD simulation with the velocity-Verlet algorithm in the NVT
ensemble. Here, for a N particle system, we first initialize their velocity randomly according to
Boltzmann distribution at temperature T and then at each timestep δt we compute atomic forces and
acceleration aik = Fik

mi
which is used to update atomic velocities vi followed by updating atomic

coordinates as Rik(t+ δt) = Rik(t) + vikδt . Here, δt is taken as 0.5fs.

3 RESULTS

SiC is a two-component system, where interatomic interactions are dominated by the strong S-C
covalent bond which determines the bond-length and bond-angles in the crystal. Therefore, it is
sufficient for a simple GNN model to learn a robust potential function for SiC without any need
for energy decomposition into multiple terms. We have trained the GNN-SiC model using 1000
frames of AIMD data at 1500 K-3500 K, where each frame has 512 atoms. After training, we
got RMSE error of 2.5 meV/atom and 2.3 meV/atom, respectively on training and test data of 100
frames. Similarly, the RMSE error on predicted forces are 0.26 eV/Å and 0.27 eV/Å respectively,
on training and test data. The predicted RMS errors are well within the reported in the literature by
other people for various other systems. Figure 2b shows the validation of the GNN-SiC model in
MD simulation of a 512 particle system at 2000 K in terms of potential energy (PE) vs time for 15
ps (30,000 steps) under NVT ensemble. We observe that PE fluctuates around a mean value which
indicates that system is stable as there is no external force on the system.

Figure 2: (a) Learned SiC local interaction. (b) PE vs time over 15 ps MD simulation. Inset shows
structure of SiC after 15 ps simulation.

In AIMD, we only have access to total PE and atomic forces ~Fi, which we use as ground truth
for training. However, the stability of the system in MD dynamics is also dependent on the local
interactions ~Fij between atoms where ~Fi =

∑
j
~Fij . These ~Fij are inferred by the neural network

models during training and visualizing value of these local interaction as function of distance after
training will tell us about the physics of atomic interaction in the system. Figure 2a shows this
~Fij interaction as function of distance on a 512 atom system of GNN-SiC model. We can observe

that Si-C and C-Si interaction are attractive in nature with its minima around 2Å, which is also Si-C
bond length. We can also observe that learned Si-Si and C-C interaction is purely repulsive in nature,
which is consistent the covalent SiC with attractive interactions only between Si and C.

We have trained our models for GeSe2 on 1000 frames of 384 atoms each taken from AIMD trajec-
tories between 1100 - 1800 K. Training and test errors of different structures are shown in Table 1.
Similar visualization of ~Fij in a 384 atom test GeSe2 frame from GNN-GeSe2 model is shown in
Figure 3a. Unlike SiC, interatomic interactions GeSe2 are highly complex for all bond types partic-
ularly Se-Se bonds, which is repulsive above 3Å, attractive between 2 - 3 Å and becomes repulsive
again at ≤ 2Å. Here, attractive interaction between Se-Se happens between inter-layer atoms. This
complex interaction between atoms in GeSe2 causes system to fail within 5 ps of MD simulation
due to Se-Se clustering from inter-layer atoms as shown in Figures 3b, 3c. However, decomposing
the total energy into ENN2

+ ENN3
+ EGNN not only reduces the RMSEs on static frames but

increases the robustness of the system in multiple 15 ps long MD trajectories at 1100 K.
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Figure 3: (a) Learned GeSe2 local interaction. (b) PE vs time with and without energy decomposi-
tion. (c) System collapse due to Se-Se clustering in the model without energy decomposition

Table 1: Energy and Force RMSE errors of on training and test data without energy decomposition
EGNN and with energy decomposition ENN2

+ ENN3
+ EGNN

Energy (meV/atom) Force (meV/Å)
Model Training Test Training Test
EGNN 2.16 2.48 0.29 0.25
ENN2 + ENN3 + EGNN 1.06 1.64 0.17 0.17

4 CONCLUSION

We have developed a GNN interaction model for performing classical MD simulations with quantum
mechanical accuracy. For a ‘simple’ system like SiC, a GNN is sufficient to create models that have
robust long time MD dynamics. However, for complex GeSe2 systems with multiple metastable
configurations in its potential energy surface, inductive bias is needed in the form of decomposing
total energy into 2-body and 3-body terms to create models that generate stable MD trajectories.
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