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ABSTRACT

This paper considers calculation of prediction intervals (PIs) by neural networks
(NNs) for quantifying uncertainty in regression tasks, so as to provide fast, accurate
and robust emulators to accelerate scientific simulations. We propose a novel
method to learn lower and upper bounds of the PI using independent NNs without
defining an exclusive loss. Our method requires no distributional assumption,
does not introduce extra hyper-parameters, and can effectively identify out-of-
distribution samples and quantify their uncertainty. We demonstrate advantages of
our method using a benchmark problem and two real-world scientific applications.

1 INTRODUCTION

Accelerating simulators allows researchers to try out many ideas and has shown promise to improve
scientific discovery and enable real-time prediction-based experimental control and engineering
operation. Neural networks (NNs) have shown impressive success in speeding up simulations by
forming a fast emulator to learn the underlying mechanism. However, to successfully learn the
simulations, the emulator needs to be not only fast and accurate but more importantly capable of
quantifying uncertainty. Thus, when we deploy the emulator we can interpret confidence, capture
domain shift of out-of-distribution (OOD) conditions, and recognize when the model is likely to fail.

A diverse set of approaches have been developed to quantify uncertainties of NN models, ranging
from fully Bayesian NNs (MacKay, 1992), to assumption-based variational inference (Hoffman et al.,
2013; Gal & Ghahramani, 2016), and to empirical ensemble approaches (Lakshminarayanan et al.,
2017; Pearce et al., 2020; Amini et al., 2020). These methods require either high computational
demands or strong assumptions or large memory costs to store the ensemble of models. When
quantifying uncertainty of NNs used to build emulators for simulations, we focus on evaluating
model outputs’ uncertainty of a regression task. Building prediction intervals (PIs) is a widely used
approach for this purpose. PIs provide a lower and upper bound for an NN’s output, such that the
value of the prediction falls between the bounds for some target percentage (e.g., 95%) of the unseen
data. Maximum likelihood estimation (Touretzky et al., 1995) is a well-known approach for building
PIs by using two NNs, where one predicts the value and the other predicts the variance. Deep
ensemble (DE) method (Lakshminarayanan et al., 2017) is another way being used for generating
PIs. DE uses a single NN to output the predicted mean and variance simultaneously. Both techniques
impose a Gaussian assumption on model errors and may cause problems in producing bounds for the
asymmetric distributions.

Recently, a distribution-free, quality-driven (QD) approach (Pearce et al., 2018) was proposed to
calculate PIs for NNs. QD derives the loss function based on the axiom that high-quality PIs should
be as narrow as possible while capturing a specified portion of data. It uses two hyper-parameters in
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the loss to meet the axiom. The method demonstrates promising performance, but a hyper-parameter
fine tuning may be needed to achieve the desired performance.

In this work, we develop a novel method for calculating the PIs. We use NNs to learn the lower
and upper bounds of the PI directly without assuming a specific data distribution which makes it
flexible and suitable for a wide range of problems. Additionally, we use standard loss functions such
as mean squared error (MSE) without introducing extra hyper-parameters, which enables a stable and
fast learning. Furthermore, our method is capable of capturing domain shift of OOD, which allows
for a reasonable uncertainty quantification of the unseen data and future conditions. These three
contributions of our work can facilitate simulations by providing fast, accurate and robust emulators.

2 BACKGROUND

We consider the following regression task: learn a function y = fω(x) : Rd → R, parameterized
by a vector ω, using a given dataset Dtrain = {xi, yi}Ni=1. The training of fω is done by solving the
following optimization problem:

min
ω
J(ω) with J(ω) =

1

N

N∑
i=1

Li(ω), (1)

where Li(ω) is the loss function. In this work, we define Li(ω) as the sum of the squared error, i.e.,
Li(ω) = ‖yi − fω(xi)‖22, which encourages the model to learn the correct answer in the `2 norm.
Generally, the goal of regression is to predict y with a point estimate. Here, we estimate not only y
but also its uncertainty to quantify our confidence in the prediction.

3 OUR METHOD

In this work, we would like to answer the following questions:

• Q1: Can we produce reliable PIs without introducing sensitive hyper-parameters into training?

• Q2: Can we compute PIs without imposing any assumption on data distribution?

• Q3: Can we reasonably estimate the uncertainty on out-of-distribution samples?

Our key idea is to learn fω(x), the upper and lower bounds of the PI separately using three indepen-
dent neural networks. The specific procedure of our method is described below.

Learning the uncertainty profiles. We first train the model fω(x) by solving the problem in Eq. (1)
using the MSE loss. This is the standard regression problem, where the trained fω(x) provides the
average approximation of the training data in Dtrain. Next, use the trained fω(x) to generate two
separate datasets Dupper and Dlower for learning the upper and lower uncertainty profiles, i.e.,

Dupper =
{
(xi, yi − fω(xi))

∣∣ yi ≥ fω(xi), i = 1, . . . , N
}
,

Dlower =
{
(xi, fω(xi)− yi)

∣∣ yi < fω(xi), i = 1, . . . , N
}
,

(2)

where Dupper and Dlower includes data points above and below fω(x), respectively. The number
of data points in Dupper and Dlower should be comparable when the MSE loss for training fω(x)
achieves a sufficiently small value.

Next we train another two models, denoted by uθ(x) and vξ(x), to learn the uncertainty profiles
described by Dupper and Dlower. uθ(x) and vξ(x) are trained separately using the MSE loss, i.e.,

θ = argmin
θ

∑
xi∈Dupper

(yi− fω(xi)− uθ(xi))2, ξ = argmin
ξ

∑
xi∈Dlower

(fω(xi)− yi− vξ(xi))2. (3)

The idea of training uθ and vξ separately makes it possible to use the standard MSE loss without
defining more sophisticated losses as in (Lakshminarayanan et al., 2017; Amini et al., 2020).

Optimizing PIs via root-finding methods. We now describe how to use the trained uθ and vξ to
calculate PIs for a given quantile γ ∈ [0, 1]. We define the upper and lower bounds of the PI to be
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fω + αuθ and fω − βvξ, respectively, where α and β are unknown parameters. We determine their
values by finding the roots of the following functions

Qupper(α) =
∑

(xi,yi)∈Dupper

1yi≥fω(xi)+αuθ(xi)(xi, yi)−N(1− γ)/2,

Qlower(β) =
∑

(xi,yi)∈Dlower

1yi≤fω(xi)−βvξ(xi)(xi, yi)−N(1− γ)/2,
(4)

where N is the number of samples in Dtrain and 1(·) is the indicator function. In this work, we use
the bisection method (Quarteroni et al., 2006) to find the roots of Qupper and Qlower, denoted by αr
and βr, respectively. The PI for the quantile γ is then defined by [fω − βrvξ, fω + αruθ]. When the
root finding problems in Eq. (4) are exactly solved, i.e., Qupper(αr) = Qlower(βr) = 0, the number
of samples falling in [fω − βrvξ, fω + αruθ] is exactly Nγ. We emphasize that our strategy does
not impose any assumption on the distribution of yi ∈ Dtrain.

Identifying out-of-distribution samples. When using the trained model fω(x) to make predictions
for x 6∈ Dtrain, it is highly desirable that the uncertainty, i.e., indicated by the width of the PI,
increases with the distance between x and Dtrain. Since the uncertainty profiles uθ and vξ are trained
independently, it is easy to achieve OOD identification by proper initialization. Specifically, we
initialize θ and ξ such that uθ and vξ are significantly bigger than |yi − fω(xi)|, where fω is already
trained. This can be achieved by setting the bias of the output layer of uθ and vξ to a big value.
During the training process, the losses in Eq. (3) will encourage the decrease of uθ(x) and vξ(x)
only for in-distribution samples (i.e., xi ∈ Dtrain), not for OOD samples. Thus, after training, the PI
will be significantly wider for OOD samples than for in-distribution samples (see Figure 1), which
provides an effective OOD detection approach.

4 EXPERIMENTS

We use three examples to demonstrate our method. We compare our method to QD (Pearce et al.,
2018) and DE (Lakshminarayanan et al., 2017) in calculation of PIs for non-Gaussian data and OOD
samples, and in terms of training stability and accuracy. Detailed information about experiment setup
and more experimental results are available in Appendix.

4.1 CALCULATING PIS BASED ON NON-GAUSSIAN DATA

We demonstrate our method in calculating PIs on a non-Gaussian synthetic dataset (Figure 1).

Figure 1: Comparison of 95% PI for y = x3 + ε with
asymmetric noise ε. Our method and QD outperform
DE by producing tighter bounds on in-distribution data,
as both methods do not impose assumptions on the dis-
tribution of ε. Our method and DE outperform QD in
OOD region by providing more reasonable (wider) PIs.

We train models on y = x3 + ε within [−4, 4]
and test within [−6, 6]. The noise ε is defined
by ε = s(ζ)ζ, where ζ ∼ N (0, 1), s(ζ) = 10
for ζ ≥ 0 and s(ζ) = 2 for ζ < 0. For such
asymmetric noise, the 95% PIs produced by our
method and QD capture about 95% of training
data with tight bounds in [−4, 4], while DE pro-
duces an unnecessarily wide lower bound in
[−4, 4] due to its Gaussian assumption on the
noise’s distribution. Additionally, our method
and DE produce reasonably wide PIs in the
OOD region [−7,−4] ∪ [4, 7], while QD pro-
duces too narrow (overconfident) PIs that under-
estimate the uncertainty on OOD samples.

4.2 LEARNING AN OOD-AWARE ANTOENCODER-BASED COMBUSTION MODEL

We use our method to build an OOD-aware autoencoder-based combustion model for fast prediction of
reacting flows inside combustion engines. Autoencoder NNs have been applied for reducing chemical
kinetics (Zhang et al., 2021; Mirgolbabaei et al., 2014), but it involves the risk that non-physical
solutions may be produced for combustion states far away from training data. Figure 2 presents such
an example. It shows the elemental mass conservation errors of two test sets, i.e., in-distribution (ID)
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Figure 2: Elemental mass conservation
errors. An elemental error of 20% is ex-
pected to cause large errors in temperature
prediction thus false extinction/ignition
events in engine simulations. With OOD-
aware model, non-physical solutions with
conservation laws violated can be detected
before causing further damages.

and OOD. Both sets have not been seen during training. The
maximum error in ID test set is less than 1%, while it shoots
up to 20% in the OOD set. Such a large elemental error in
reduced chemistry models is expected to cause significant er-
rors in energy conservation/temperature prediction thus lead-
ing to non-physical solutions in engine simulations. Iden-
tifying OOD samples is critical to detecting non-physical
solutions before they lead to poor engine designs. In Fig-
ure 3, we evaluate our method’s capability in identification
of OOD samples in the two test sets by comparing it to DE.

A sound PI method should produce a large predictive uncer-
tainty when the predictive error is high and a small uncer-
tainty when the error is low, showing a close correspondence
between the uncertainty and the error, and it should also
provide a large uncertainty on OOD samples and a small

uncertainty on ID. In Figure 3, our method shows a strong correlation between the uncertainty and
the error with a large number of samples clustered along the diagonal line. Additionally, our method
can clearly separate OOD samples from ID samples with different uncertainty and error magnitudes.
In comparison, DE with ensemble size of one cannot distinguish OOD samples from ID. Although
DE with ensemble size of ten shows an improved separation of OOD from ID, it does not produce as
good uncertainty-error correlation as our method. Furthermore, our method is easy to train, while the
training of DE is tedious due to the multiple objectives involved in its loss function.

4.3 LEARNING AN EARTH SYSTEM LAND MODEL WITH ACCURATE PIS
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Figure 3: Predictive uncertainty (the width of PI) vs.
predictive error of the ID (red) and OOD (blue) test
sets from our method and the DE method. DE with
a single run ((a)− (c)) fails to capture the difference
in uncertainty for ID and OOD samples. DE with 10
runs ((d)− (f)) shows improved but still limited sepa-
ration of OOD samples from ID samples and it fails to
produce the uncertainty-error correlation. Our method
((g)− (i)) shows a strong correlation between the un-
certainty and the error and clearly demonstrates that
OOD and ID have different uncertainty magnitudes.

We demonstrate our method in calculation of
accurate and reliable PIs using the Earth System
Land Model (ELM) developed in U.S. Depart-
ment of Energy. ELM simulates global carbon
flux and a single model simulation can take more
than one day. We use our method to build an
emulator for accelerating the ELM simulation
of ten quantities with calculation of their PIs
to quantify uncertainty. We have 1000 ELM
simulation samples with 500 samples for train-
ing and 500 samples for testing. We compare
our method to QD using two metrics, predic-
tion interval coverage probability (PICP) and
mean prediction interval width (MPIW) whose
definition is included in Appendix. A well
calibrated PI should be as narrow as possible
whilst capturing a specified portion of data. So,
when it is asked to output a 90% PI, an accu-
rate uncertainty estimation method should pro-
duce a small MPIW value while ensuring its
PICP around 90%. Table 1 summarizes the
PICP and MPIW results for the testing set. Our
method outperforms QD1 on all ten model out-
puts, where the PICP is closer to the 90% target
and MPIW is on average 60% narrower. Ad-
ditionally, our method does not introduce extra
hyper-parameters into training as we just use
the MSE loss. In contrast, QD introduces two
sensitive hyper-parameters, shown in Figure 4,
which suggests hyper-parameter fine tuning is
required for QD.

1The QD results in Table 1 is after hyper-parameter fine tuning shown in Appendix.
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5 CONCLUSIONS

In this work, we proposed a PI method for uncertainty quantification of regression models which
requires no data distribution assumption, introduces no sensitive hyper-parameters and can effectively
identify OOD samples. We demonstrated the advantages of our method in a toy regression task
with non-Gaussian noise and two real-world scientific applications, in comparison with two state-
of-the-art approaches, QD and DE. In the non-Gaussian regression example, our method captures
the asymmetric noise with desired tight bounds in ID region and wider PIs in OOD region, while
DE produces unnecessarily wide lower bounds in ID region and QD fails to produce as wide PIs
for OOD as the other two methods. The autoencoder combustion model example suggests that our
method provides better uncertainties than DE by showing a strong uncertainty-error correlation and
a clear separation of OOD samples from ID. In the ELM model example, our method outperforms
QD by producing PIs closer to the desired coverage proportion and reducing the average PI width by
around 60%.
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A APPENDIX

A.1 RELATED WORK

A large history of uncertainty estimation methods has been proposed to quantify NN uncertainty, and
most of them are developed based on Bayesian theory. Jospin et al. (2020); Wang & Yeung (2021)
summarized Bayesian methods for deep learning, including Markov chain Monte Carlo (MCMC)
and variational inference (VI). Bayesian NNs, which learn a distribution over weights, require some
modifications to the training procedure and are usually computationally expensive. To address these
challenges, ensemble approaches (Pearce et al., 2020; Lakshminarayanan et al., 2017; Amini et al.,
2020) have been proposed to provide a simple-to-implement and readily parallelizable alternative for
NN uncertainty quantification.

Prediction intervals (PIs) are another way of quantifying NN uncertainty specifically for regression
tasks. PIs directly communicate model outputs uncertainty by offering a lower and upper bound
for their predictions, and assure that the actual data will fall between the bounds with the desired
probability. These features make PIs understandable and informative for decision making. The
calculation of PIs, which works on the quantity of target variables directly, is straightforward and
rather simple compared to the Bayesian NNs, which deal with the large amount of NN weights. Our
method falls into this category.

A.2 SETUP FOR THE TOY PROBLEM IN SECTION 4.1

The training set consist of 1000 random samples of y = x3 + ε from [−4, 4]. fω(x) is defined as
a fully connected neural network with 1 hidden layers and 200 hidden neurons. uθ and vξ share
the same network architecture as fω. To make sure u and v are strictly positive, we add operation√
(·)2 to the outputs of the neural networks. The same approach is used for the other two real-world

application problems in Section 4.2 and 4.3. The three neural networks are trained separately by
stochastic gradient descent with learning rate being 0.01.

For the QD method (Pearce et al., 2018), we use the implementation at https://github.com/
TeaPearce/Deep_Learning_Prediction_Intervals. For the DE method (Lakshmi-
narayanan et al., 2017), we use the implementation at https://github.com/vvanirudh/
deep-ensembles-uncertainty. We used the default parameters suggested by the authors of
the papers for both baseline methods.

A.3 SETUP FOR THE EARTH SYSTEM LAND MODEL IN SECTION 4.3

Energy Exascale Earth System Land Model (ELM) developed in U.S. Department of Energy is a
complex land-surface model that simulates terrestrial water, energy, and biogeochemical processes in
a global scale. ELM is an important tool for improving our understanding of ecosystem responses to
climate change but is very computationally expensive. In this work, we use our method to build a
fast-to-evaluate emulator to accelerate the ELM simulation. We are considering ten model outputs
that are related to carbon fluxes.

The definition of PICP and MPIW. For a testing dataset {(xi, yi)}Ni=1 with N samples, we denote by
lPI
i and uPI

i the lower and upper bounds of an PI at xi. Then a PI with confidence γ ∈ [0, 1] should
capture the desired portion of data, i.e., P(lPI

i ≤ yi ≤ uPI
i ) ≥ 1− γ. For each data yi, we can define

a binary value ki as

ki =

{
1, if lPI

i ≤ yi ≤ uPI
i ,

0, otherwise

to indicate if yi is included in the PI. Then the total number of data points included in the PI can be
represented by

c =

N∑
i=1

ki,
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The PICP and MPIW are defined by

PICP =
c

N
and MPIW =

1

N

N∑
i=1

uPI
i − lPI

i .

The desired PI should provide PICP that is close to γ with smallest value of MPIW.

Our method consists of three fully-connected neural networks for average, upper bound, and lower
bound approximation, respectively. All networks share the same structure with two hidden layers, and
100 hidden neurons. The input layer contains 8 neurons for the 8 input features with linear activation.
Rectified linear unit (ReLU) activation functions are implemented for hidden layers. The input layer
contains 8 neurons for the 8 input features with linear activation. Adam optimizer is used for updating
the gradients with a 0.02 learning rate initially, and it starts to decay exponentially after 50 iterations
with a 0.9 decay rate. The entire data set contains 1,000 samples with 8 inputs and 10 outputs. We
split it into 500 training and 500 testing points randomly, and standardize them before the training
processes. For a single experiment, the three neural networks are trained sequentially to reach 300
iterations before the upper/lower bound optimization. The optimization target quantile is 0.9 in our
experiments. The models are implemented with Tensorflow 2.4.1.

Hyper-parameter tuning for QD. The QD method defines a new loss using the PICP and MPIW, i.e.,

LQD =
1

c

N∑
i=1

(uPI
i −lPI

i )ki+
λN

γ(1− γ)
max

{
0, (1− γ)− 1

N

N∑
i=1

σ((uPI
i − yi)s)σ((yi − lPI

i )s)

}
,

where σ is the sigmoid function. The two sensitive hyper-parameters are the weight λ and the
smoothness parameter s of the sigmoid function. They are tuned based on our 50%/50% train/testing
data split, and the grid search method is used. The softening factor (s = 160.0) is used to avoid weight
shrinking with the low function during training. Lambda (λ=15) is selected to control the importance
of coverage versus width for the loss function.

A.4 SETUP AND MORE RESULTS FOR THE COMBUSTION PROBLEM IN SECTION 4.2

Chemical kinetic models are crucial for computational fluid dynamics (CFD) modeling of reacting
flows in combustion systems. To describe the chemical kinetics of typical hydrocarbon fuels, detailed
mechanisms consisting of hundreds of species and Arrhenius reaction steps are required. The large
number of chemical species represent the large number of transport equations need to be solved in
CFD simulations. Reduced chemical models are needed for fast and accurate CFD simulations. In
this work, an OOD-aware autoencoder reduced chemistry model is developed for syngas CO/H2

combustion. The original chemical mechanism (Hawkes et al., 2007) has 11 species, i.e., H2, O2, O,
OH, H2O, H, HO2, CO, CO2, HCO and N2. The reduced autoencoder model has two variables. The
training set contains around 1.14 million samples with 12 input features, which are the 11 species
mass fractions and temperature, from zero-dimensional perfectly stirred reactors. The ID test set
contains 0.34 million samples from the same distribution with the training set. The OOD test set
consists of 1.9 million samples from three-dimensional direct numerical simulations in (Hawkes
et al., 2007).

All NN models in the combustion problem are implemented with Tensorflow 2.4.0. The autoencoder
model is defined as a fully connected NN with five layers, i.e., input layer, hidden layer in the
encoder part with 12 neurons, latent layer with 2 neurons, hidden layer in the decoder part with 12
neurons, and output layer. Hyperbolic tangent activation function, Tanh, is used. When combining
the autoencoder model with the DE method, we use an additional NN for feature variances. The
variance NN takes the same input as the autoencoder and outputs variances for the 12 features with
three dense hidden layers. Every hidden layer has 60 neurons with Tanh activation function. Softplus
activation function is used for the output layer to guarantee a positive variance. The two NNs are
trained together with the loss function,

LDE =
1

N

N∑
i=1

LDE,i(ω),

where LDE,i is the loss function for the ith sample as,

LDE,i =
1

2

Nx∑
k=1

log σ2
i,k +

1

2

Nx∑
k=1

(xi,k − µi,k)2 + εele
σ2
i,k

.
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In the above equation, Nx = 12 is the number of input features, µi,k and σ2
i,k are the predicted mean

and variance of the kth feature of the ith sample, xi,k, respectively, and εele is a penalty for violation
of elemental mass conservation. In the training process, a competition between the two terms in the
loss function is observed, which leads to an undesirable accuracy deterioration of the autoencoder
model. A decreasing stepwise learning rate with 6000 epochs is specified in the training, where 0.01,
0.005 and 0.001 are used for the first 3000 epochs and 5× 10−4 is used for the rest.

When combining the autoencoder model with our method in Section 3, we use two sets of 12 variance
NNs for 12 output features, respectively. Each pair of NNs output the lower and upper standard
deviation of a single feature, where 1 dense hidden layer with 1200 neurons and Tanh activation
function is employed. Different from the DE method, the variance NNs in our method are trained
independently from the autoencoder model hence provide an easy and nonintrusive method for
uncertainty. In the combustion problem, γ = 0.6826 is specified to get the reported PIs. The learning
rate is specified as 5× 10−4 for the training of the NNs.

In Section 4.2, results for three variables, i.e., temperature and mass fractions of H2 and O2, from
the DE method and our method have been reported (Figure 3). Results for all the 12 variables are
presented here in Figures A.1, A.2 and A.3 for DE with ensemble size of one, DE with ensemble
size of ten, and our method, respectively. Consistent conclusions with Figure 3 can be made that our
method provides superior performance in identification of the OOD samples and in producing the
correlation between the predictive uncertainty and the predictive error.
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Figure A.1: Predictive uncertainty vs. predictive error for all output features of ID (red) and OOD (blue) test
sets from the DE method with ensemble size of 1.
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Figure A.2: Predictive uncertainty vs. predictive error for all output features of ID (red) and OOD (blue) test
sets from the DE method with ensemble size of 10.
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Figure A.3: Predictive uncertainty vs. predictive error for all output features of ID (red) and OOD (blue) test
sets from our method.
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