
Published as a conference paper at ICLR 2021

TOWARDS DESIGNING AND EXPLOITING GENERATIVE
NETWORKS FOR NEUTRINO PHYSICS EXPERIMENTS
USING LIQUID ARGON TIME PROJECTION CHAMBERS

Lutkus, Paul & Wongjirad, Taritree
Department of Physics and Astronomy, Tufts University, Medford, Massachusetts
The NSF AI Institute for Artificial Intelligence and Fundamental Interactions
{paul.lutkus,tartiree.wongjirad}@tufts.edu

Aeron, Shuchin
Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts
The NSF AI Institute for Artificial Intelligence and Fundamental Interactions
shuchin.aeron@tufts.edu

ABSTRACT

In this paper, we show that a hybrid approach to generative modeling via combin-
ing the decoder from an autoencoder together with an explicit generative model
for the latent space is a promising method for producing images of particle tra-
jectories in a liquid argon time projection chamber (LArTPC). LArTPCs are a
type of particle physics detector used by several current and future experiments
focused on studies of the neutrino. We implement a Vector-Quantized Variational
Autoencoder (VQ-VAE) and PixelCNN which produces images with LArTPC-
like features and introduce a method to evaluate the quality of the images using a
semantic segmentation that identifies important physics-based features.

1 INTRODUCTION

Liquid argon time projection chambers (LArTPC) (Rubbia (1977); Chen et al. (1976)) are a class
of detector playing a prominent role in current and future experiments studying the neutrino, one of
the fundamental particles (Amerio et al. (2004); Anderson et al. (2012); Acciarri et al. (2017a;a);
Abi et al. (2018)). Through precision measurements of the behavior of the neutrino, the experiments
aim to further our understanding of the physical laws that govern our universe. LArTPCs are an
appealing choice of detector technology because they can be built to large sizes – kiloton-scale
detectors with O(10 m) dimensions – while also economically instrumented to capture the features
of charged particle trajectories at the O(mm) scale. This combination enables LArTPC experiments
to record a large number of high resolution observations of neutrino interactions.

The data produced by LArTPCs can be naturally arranged into an image-like format which capture
projections of particle trajectories. Charged particles traversing the detector create clouds of ioniza-
tion electrons along their path. The amount of ionization created is proportional to the amount of
energy lost by the particle. The pattern of ionization and the amount of energy lost in the detector
depends on the particle type and momentum. This makes it possible to analyze the images and infer
the sets of particles and their energies. Figure 1(b) shows some examples of images produced.

The need for efficient image analysis has motivated the the use of deep convolutional neural net-
works (LeCun et al. (1998); Krizhevsky et al. (2017)) to identify key features or objects within
LArTPC images for physics analyses (Acciarri et al. (2017b); Collaboration et al. (2019); Abratenko
et al. (2020a;b); Drielsma et al. (2020); Abi et al. (2020)). Recent efforts have focused primarily
towards mapping an image or portions within it to quantities such as different classes of particle
trajectories (Abratenko et al. (2020b)), categories of neutrino interactions (Abi et al. (2018)), or
identify individual particles (Abratenko et al. (2020a)).

1



Published as a conference paper at ICLR 2021

Popular Models/Methods Type
Normalizing Flows

Kobyzev et al. (2020, To Appear); Papamakarios et al. (2019) Explicit

Pixel-CNN
Van den Oord et al. (2016); Salimans et al. (2017) Explicit

Variational Auto-Encoders (VAEs)
Kingma & Welling (2019); Bousquet et al. (2017) Implicit

Generative Adversarial Networks
Goodfellow et al. (2014); Arjovsky et al. (2017)

Gulrajani et al. (2017); Li et al. (2017); An et al. (2019)
Implicit

Vector Quantized-VAE, Probabilistic AE (PAE)
Van Den Oord et al. (2017); Böhm & Seljak (2020) Explicit Latent + Implicit Decoder

Table 1: Table summarizing popular approaches for generative modeling. To emphasize the per-
tinent differences, we categorize into explicit, implicit, and hybrid models. Hybrid models utilize
explicit model to generate a low-dimensional latent with an implicit model that comes from the
decoder of an autoencoder.

Less explored, however, are generative models for LArTPCs. The ultimate goal for these models
would be to receive a list of particles, their position, and momentum and produce an image con-
taining their trajectories through the detector, thereby providing a faster alternative to the detailed
physics-based simulation of the detector. There have been some efforts in producing particle physics
data via generative networks. In Alonso-Monsalve & Whitehead (2020) images with tracks, similar
to what might be found in a LArTPC, are generated through the help of an explicit physics model.
Nevertheless, this preliminary approach is not suitable towards capturing the rich shower-like pat-
terns, varying track-like, and mixed patterns that are present in LArTPC images. To this end we
revisit the recent developments in generative modeling and argue for a particular type of model that
exhibits promising behavior.

There are two ways to specify a probability distribution, viz., explicit vs implicit. In explicit models,
a parametric form of distribution is specified, say PX(x; Θ), where Θ is set of parameters. In
implicit models, the main idea is that if a random variable X has distribution P, this distribution is
implicitly specified via a transformation. That is, X = G(Z) whereG is a map and Z ∼ PZ . Given
G,PZ it is possible to compute PX , but it is hard whenG is complex, say a deep neural network, and
especially when PZ is assumed to be simple and lower-dimensional compared to X . On the other
hand, this allows one to generate IID samples from PX via IID samples from PZ . Hence the name
generative modeling. Table 1 provides a rough and apologetically incomplete (for lack of space)
literature survey in this context. The main point we want to highlight here is that hybrid models
may behave better towards modeling images from LArTPC experiments compared to fully implicit
or fully explicit models. We single out the Vector Qunatized(VQ)-VAE Van Den Oord et al. (2017)
and Probabilistic Autoencoder (PAE) Böhm & Seljak (2020) as two recent models that are combine
implicit modeling with an explicit model towards an overall generative network. Between VQ-VAE
and PAE, the main difference is in the way the latent space is regularized. The latent space in VQ-
VAE consists of a finite set of quantization points, while in PAE it is a continuous subset of Rd. Of
these two, in this paper we work with VQ-VAE since the pixel CNN approach that explicitly models
the quantized latent space, in spirit, also models the time evolution a particle trajectory through the
detector. A full comparison between the two and various tradeoffs is on-going and will be reported
in a future manuscript.

Why generative models for LArTPCs? - Generative networks enable computationally efficient
means to generate trajectory examples, thereby bypassing and/or compliment the traditional simu-
lation chain consisting of particle transport and detector signal modeling. This would make it easier
to meet the demand for example data required by physics analyses.

Generative models also open the path towards a complimentary approach to event reconstruction.
With models that can produce trajectory examples, conditional on parameters such as momentum,
one can extract quantities like momenta or particle ID by comparing generated images produced
by different physical parameters and choosing the best match by a likelihood function or possibly a
learned loss function implemented via a neural network. One would iterate until new hypotheses fail
to improve the loss. Concretely, given a data image d and a set of generative modelsGp, p = 1, .., P ,

2



Published as a conference paper at ICLR 2021

one approach inspired by recent use of deep networks in inverse problems Bora et al. (2017); Jalal
et al. (2020) would be to solve for,

p̂ = arg min
p

{
min
z
‖Gp(z)− d‖2 + λ logPZ(z)

}
(1)

Another motivation for studying generative networks is understanding ways to represent the data
that enable different applications. For example, developing good representations of the data can
lead to a compression scheme with tolerable losses. A tolerable level of mistakes in a compression
algorithm might be defined to be the same level of changes to the raw wire signals coming from the
range of kernel parameters choices for deconvolving wire signals. If a compression scheme can be
achieved, this alleviates IO bottle necks in executing physics analyses on the large data sets produced
by neutrino experiments.

2 METHODS

The training of a the generative model proceeds in two phases and follows the work in Van Den Oord
et al. (2017). The first phase is to train a VQ-VAE network to properly reconstruct images. Through
this process, the VQ-VAE network learns a map from detector images to a latent ”code” image
where each pixel is assigned the index of one of k-vectors in a d-dimensional feature embedding
space. In the next phase, a set of training images are mapped into a code image. A PixelCNN
network Salimans et al. (2017) is then trained to learn the prior over the latent code indices of these
images. Once trained, the PixelCNN can be used to generate a novel code image. This code image is
then passed into the decoder of the VQ-VAE in order to generate a detector image. For the training
data, we used publicly available examples of LArTPC images produced by the DeepLearnPhysics
collaboration. The images contain trajectories from one of five possible particle species: e−, γ, µ−,
π+, or proton (p). Please see the supplement for details of the implementation.

In order to provide a measure of image quality, we studied the output of a semantic segmentation
network (SSNet) trained to classify individual pixels as examples from one of two categories: track
or shower. These categories come from physics of how particles travel through matter. Heavier
charged particles, which include the pion, proton, and muon, travel primarily along a linear path
often referred to as a “track.” Electrons, which have a much smaller mass, are more easily deflected
by electromagnetic (EM) interactions with atoms. Furthermore, EM interactions can induce the
creation of photons which, being electrically neutral, do not produce a visible trajectory for some
distance before possibly interacting and producing a new electron or an electron-positron pair. This
can repeat and result in a cascade of trajectories referred to as an EM shower, or “shower”. Track and
shower labels are useful to LArTPC analyses and already some form of this network is currently in
use by experiments. Therefore, we use the similarity in the SSNet output between real and generated
images as a proxy for how well the generative model can reproduce LArTPC image features and thus
a proxy of the “visual quality” of generated images. We implement a network based on the work
in Abratenko et al. (2020b). Details of this implementation can be found in the supplement.

3 RESULTS

Images generated by the PixelCNN+VQ-VAE decoder contain patterns of charge that resemble both
track- and shower-type trajectories in LArTPCs. Figure 1 provide examples of both generated and
training images. There are more samples in the supplement. Visual inspection leads to the following
observations. Local patches of the generated images are beginning to resemble those from LArT-
PCs. In particular, ”v”-shape or branching structures characteristic of shower trajectories are visible.
Extended lines without branching, characteristic of “tracks”, are also observed. Isolated shower-like
trajectories we believe could fool an expert. However, taken as a whole, the generated trajectories
still have clear flaws. Overall, there seems to be a bias towards producing shower-like features. The
network, furthermore, has trouble producing extended structure for longer tracks and larger showers.
Tracks seem to be shorter in the generated than test images. Larger shower-like regions often do not
exhibit the structure one might expect.

We compliment visual inspection with a study of a track-shower pixel labeling network. Figure 2
shows the fraction of pixels with a given label score for both generated and test images. Ideally,
if the generated images were indistinguishable from the test images, there would be little different

3



Published as a conference paper at ICLR 2021

in the histograms. We see, however, an increased number of pixels labeled as shower-like in the
generated images and a relative deficit of pixels categorized as track-like. This correlates with what
was visually observed. We also compared two configurations where the number of quantized vectors
was halved to 256. We found the visual quality to be reduced. This was corroborated in the SSNet
scores through: 1) less track pixels per image, 2) a further excess in shower pixels, and 3) a larger
population of lower confidence shower pixels.

(a) Generated images

muon

electron

electron

electron muon

electron

muon (w/ decay)

proton

pion (w/ secondary interaction)

(b) Training images

Figure 1: Examples of images generated by a network (left) and from the training data set (right).

0 50 100 150 200 250 300 350 400
num shower pixels per images

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35
0.4

0.45
0.5

fr
ac

tio
n 

of
 im

ag
es Test images

Generated images

0 20 40 60 80 100 120 140 160
num track pixels per image

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

 fr
ac

tio
n 

of
 im

ag
es Test images

Generated images

(a) Comparison of track-shower pixels per images

(b) Track/shower labels on generated im-
ages

(c) Track/shower labels on test images

Figure 2: Results from studies using track-shower semantic segmentation network. (a) Comparison
of the number of labeled shower (top) and track (bottom) pixels per image for generated (red) and
test (black) images. Examples of labels on (b) generated images and (c) test images. For both, there
is an input image (top row) and corresponding label image (bottom row). The label image indicates
one of three classes: background (dark purple), track (yellow), and shower (cyan).

4 CONCLUSIONS

We present work towards a generative model which can produce convincing LArTPC images. As
far as we know, this is the first demonstration of a generative network that produces shower trajec-
tories and the first that produces track trajectories without an underlying physics-based model. The
model produces patterns that do resemble track and shower trajectories, but there is clear need for
improvement. Primarily, features at larger scales are difficult for the network. There are avenues,
such as the use of hierarchical code maps at different image scales in Razavi et al. (2019), that could

4



Published as a conference paper at ICLR 2021

improve these. Furthermore, the way that the PixelCNN calculates the probabilities can better cap-
ture the time-evolution of particle trajectories using tools such as those in Jain et al. (2020), e.g.
convolutions proceed from the center out rather in the current raster-scan order. We also plan to
move towards conditional generation where the particle species and momenta can be specified. This
gets us closer towards applying these models to event reconstruction. Finally, the types of features
found in LArTPC images have a different nature than the common data sets that the machine learn-
ing community develops on. This, we believe, makes LArTPC images an interesting data set for
studying different approaches in generative modeling.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. Department of Energy (DOE) and the
National Science Foundation (NSF). T.W. was supported by the U.S. DOE, Office of High Energy
Physics under Grant No. DE-SC0007866. S.A. was funded by the NSF under CAREER Award No.
CCF:1553075.

5



Published as a conference paper at ICLR 2021

REFERENCES

B Abi, R Acciarri, MA Acero, M Adamowski, C Adams, D Adams, P Adamson, M Adinolfi,
Z Ahmad, CH Albright, et al. The DUNE far detector interim design report volume 1: Physics,
technology and strategies. arXiv:1807.10334, 2018.

B Abi, R Acciarri, MA Acero, G Adamov, D Adams, M Adinolfi, Z Ahmad, J Ahmed, T Alion,
S Alonso Monsalve, et al. Neutrino interaction classification with a convolutional neural network
in the dune far detector. Physical Review D, 102(9):092003, 2020.

P Abratenko, M Alrashed, R An, J Anthony, J Asaadi, A Ashkenazi, S Balasubramanian, B Baller,
C Barnes, G Barr, et al. A convolutional neural network for multiple particle identification in the
microboone liquid argon time projection chamber. arXiv preprint arXiv:2010.08653 (Submitted
to PRD), 2020a.

P Abratenko, M Alrashed, R An, J Anthony, J Asaadi, A Ashkenazi, S Balasubramanian, B Baller,
C Barnes, G Barr, et al. Semantic segmentation with a sparse convolutional neural network for
event reconstruction in microboone. arXiv preprint arXiv:2012.08513, 2020b.

R Acciarri, C Adams, R An, A Aparicio, S Aponte, J Asaadi, M Auger, N Ayoub, L Bagby, B Baller,
et al. Design and construction of the MicroBooNE detector. Journal of Instrumentation, 12(02):
P02017, 2017a.

R Acciarri, C Adams, R An, J Asaadi, M Auger, L Bagby, B Baller, G Barr, M Bass, F Bay,
et al. Convolutional neural networks applied to neutrino events in a liquid argon time projection
chamber. Journal of instrumentation, 12(03):P03011, 2017b.

Saúl Alonso-Monsalve and Leigh H Whitehead. Image-based model parameter optimization us-
ing model-assisted generative adversarial networks. IEEE transactions on neural networks and
learning systems, 31(12):5645–5650, 2020.

S Amerio, S Amoruso, M Antonello, P Aprili, M Armenante, F Arneodo, A Badertscher, B Bai-
boussinov, M Baldo Ceolin, G Battistoni, et al. Design, construction and tests of the ICARUS
T600 detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 527(3):329–410, 2004.

Dongsheng An, Yang Guo, Na Lei, Zhongxuan Luo, Shing-Tung Yau, and Xianfeng Gu. Ae-ot: a
new generative model based on extended semi-discrete optimal transport. ICLR 2020, 2019.

C Anderson, M Antonello, B Baller, T Bolton, C Bromberg, F Cavanna, E Church, D Edmunds,
Antonio Ereditato, S Farooq, et al. The ArgoNeuT detector in the NuMI low-energy beam line at
fermilab. Journal of Instrumentation, 7(10):P10019, 2012.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214–223. PMLR, 2017.

Vanessa Böhm and Uroš Seljak. Probabilistic auto-encoder. arXiv preprint arXiv:2006.05479, 2020.

Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis. Compressed sensing using genera-
tive models. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 537–546, 2017.

Olivier Bousquet, Sylvain Gelly, Ilya Tolstikhin, Carl-Johann Simon-Gabriel, and Bernhard
Schoelkopf. From optimal transport to generative modeling: the vegan cookbook. arXiv preprint
arXiv:1705.07642, 2017.

H.H. Chen, P.E. Condon, B.C. Barish, and F.J. Sciulli. Fermilab proposal p-496. Technical report,
1976.

MicroBooNE Collaboration, C Adams, M Alrashed, R An, J Anthony, J Asaadi, A Ashkenazi,
M Auger, S Balasubramanian, B Baller, et al. Deep neural network for pixel-level electromagnetic
particle identification in the microboone liquid argon time projection chamber. Physical Review
D, 99(9):092001, 2019.

6



Published as a conference paper at ICLR 2021

DeepLearnPhysics Collaboration. Deep learn physics open data, 2017a. URL http://
deeplearnphysics.org/DataChallenge/.

DeepLearnPhysics Collaboration. Browsing classification data set (v0.1.0), 2017b. URL http://
deeplearnphysics.org/Blog/2017-12-29-BrowsingClassificationData_
v0.1.0.html#2017-12-29-BrowsingClassificationData_v0.1.0.

François Drielsma, Laura Dominé, Dae Heun Koh, and Kazuhiro Terao. Data reconstruction using
deep neural networks for particle imaging neutrino detectors. 2020.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. arXiv preprint
arXiv:1406.2661, 2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Im-
proved training of wasserstein gans. arXiv preprint arXiv:1704.00028, 2017.

Ajay Jain, Pieter Abbeel, and Deepak Pathak. Locally masked convolution for autoregressive mod-
els. In Conference on Uncertainty in Artificial Intelligence, pp. 1358–1367. PMLR, 2020.

Ajil Jalal, Liu Liu, Alexandros G Dimakis, and Constantine Caramanis. Robust compressed sensing
using generative models. Advances in Neural Information Processing Systems, 33, 2020.

Diederik P Kingma and Max Welling. An introduction to variational autoencoders. arXiv preprint
arXiv:1906.02691, 2019.

I. Kobyzev, S. Prince, and M. Brubaker. Normalizing flows: An introduction and review of current
methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2020, To
Appear. doi: 10.1109/TPAMI.2020.2992934.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos. Mmd gan:
Towards deeper understanding of moment matching network. In NIPS, 2017.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
shminarayanan. Normalizing flows for probabilistic modeling and inference. arXiv e-prints, pp.
arXiv–1912, 2019.

Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
VQ-VAE-2. In Advances in Neural Information Processing Systems, pp. 14866–14876, 2019.

Carlo Rubbia. The liquid-argon time projection chamber: a new concept for neutrino detectors.
Technical report, 1977.

Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++: Improving the
pixelcnn with discretized logistic mixture likelihood and other modifications. arXiv preprint
arXiv:1701.05517, 2017.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Con-
ditional image generation with PixelCNN decoders. Advances in neural information processing
systems, 29:4790–4798, 2016.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. In Advances in
Neural Information Processing Systems, pp. 6306–6315, 2017.

7

http://deeplearnphysics.org/DataChallenge/
http://deeplearnphysics.org/DataChallenge/
http://deeplearnphysics.org/Blog/2017-12-29-BrowsingClassificationData_v0.1.0.html#2017-12-29-BrowsingClassificationData_v0.1.0
http://deeplearnphysics.org/Blog/2017-12-29-BrowsingClassificationData_v0.1.0.html#2017-12-29-BrowsingClassificationData_v0.1.0
http://deeplearnphysics.org/Blog/2017-12-29-BrowsingClassificationData_v0.1.0.html#2017-12-29-BrowsingClassificationData_v0.1.0


Published as a conference paper at ICLR 2021

SUPPLEMENTARY to “Towards Designing and Exploit-
ing Generative Networks for Neutrino Physics Experi-
ments using Liquid Argon Time Projection Chambers.”

A ADDITIONAL DETAILS ON METHODS

A.1 VQ-VAE IMPLEMENTATION DETAILS

The VQVAE’s structure is best explained as a two-part network. The first network is much like
a classical autoencoder, the caveat being that vector quantization is applied to the latent codes, and
that extra losses are computed to optimize the quantization. The second network is an autoregressive
generative model that generates latent vectors one component at a time.

For the encoder and decoder, we use convolutional and deconvolutional neural networks respec-
tively. The CNN’s are arranged into blocks. Each block contains a convolutional layer with ReLU
activation, a batch-normalization layer, and finally another ReLU activation. Our experience has
been that ReLU-BN-ReLU blocks produce sets of quantization vectors that lead to more realistic
generation (compared to just BN-ReLU). This should be investigated in future work. In the convo-
lutional encoder, all blocks except the last downsample the input image by a factor of two. In the
deconvolutional decoder, all blocks except the first upsample the image by a factor of two. Encoder
outputs are fed through a vector quantization layer before being passed to the decoder.

For the autoregressive model used to model the distribution of quantization vectors over the latent
vector, we employ a masked and gated PixelCNN model.

Figure 3: Illustration of image encoding and decoding by the Vector-Quantizied Variational Autoen-
coder (VQ-VAE) network. The VQ-VAE encoder maps patches of the image to an embedding vector
space. The values of this vector are then assigned to the values of the nearest quantized-vector. The
values of the k quantized vectors are learned. In this diagram, the index of the assigned quantized
vector is displayed. The quantized feature tensor is then passed into the decoder, which reconstructs
the image.

A.2 PIXELCNN IMPLEMENTATION DETAILS

Our PixelCNN network is composed of six gated, masked, convolutional blocks. Each block is
composed of a horizontal and vertical stack. Each stack is composed of masked convolution, a
gating layer, and a residual layer. Information from the vertical stack is passed to the horizontal
stack. For the vertical stack, gating occurs after the residual layer, while in the horizontal stack
gating occurs first.

8



Published as a conference paper at ICLR 2021

The convolutional blocks are followed by two convolutional layers with an amount of output filters
equal to the number of quantization vectors. The activations are passed into a Softmax function to
approximate the likelihood of each quantization vector at that component of the latent code.

Our VQVAE implementation is based on the works of Ken Leidal and Amelie Royer, which can
be found at https://github.com/kkleidal/GatedPixelCNNPyTorch and https:
//github.com/ameroyer/ameroyer.github.io respectively.

Figure 4: PixelCNN block – rectangles represent convolutions, diamonds represent split operations
on incoming filters. The left input is the vertical stack and begins with an nxn masked convolution.
The right input is the horizontal stack and begins with a 1xn masked convolution.

A.3 TRAINING DATA DETAILS

We used publicly available examples of LArTPC images produced by the DeepLearnPhysics collab-
oration DeepLearnPhysics Collaboration (2017a). Among the available data from this source, we
used the 50k single-particle image data set to train the VQ-VAE. We use the separate 40K single-
particle image data set to test the reconstructions of the VQ-VAE. Images in both the train and test
set consist of a 256x256 image DeepLearnPhysics Collaboration (2017b). The particle generated for
each image is chosen among five species: e−, γ, µ−, π+, and protons (p). The momentum of each
particle is chosen from a uniform distribution between the following ranges (e−) 35.5 to 800 MeV/c,
(γ) 35 to 800 MeV/c, (µ−) 90 to 800 MeV/c, (π+) 105 to 800 MeV/c, and (p) 105 to 800 MeV/c.
The particle is simulated inside a large volume of argon. It is propagated via Geant4. Afterwards, a
2.56 m3 box is chosen in 3D that maximizes the particle’s trajectory within the volume and recorded
in the file. The 2D images are created as 2D projections (xy, yz, zx) of the 3D charge depositions.
All images included in the data set are guaranteed to have 2D projection images with at least 10
non-zero pixels. We use the zx projections.

A.4 GENERATOR MODEL TRAINING PROCEDURE DETAILS

Num. Quantization Vectors Quant. Vector Dim. Enc. Filters Dec. Filters. Batch Size
512 8 [16, 32] [32, 16] 512

Table 2: VQVAE Meta Parameters

Num. PixelCNN Blocks Num. Filters per Block Batch Size
6 128 512

Table 3: PixelCNN Meta Parameters

9

https://github.com/kkleidal/GatedPixelCNNPyTorch
https://github.com/ameroyer/ameroyer.github.io
https://github.com/ameroyer/ameroyer.github.io


Published as a conference paper at ICLR 2021

We train the network in two parts. First, the autoencoder is trained on a set of fifty thousand, 64x64,
single channel LArTPC images. Training is conducted with a batch size of 512 images and with the
Adam optimizer initialized with a learning rate of 3e-4.

For a single training loop, three losses are computed. First is the mean squared error between the
reconstructed image and the true image. This loss is propagated through the decoder and encoder.
Because the vector quantization process contains an argmin operation, which gradient can not pass
through, gradients are copied from the beginning of the first layer of the decoder to the last layer of
the encoder.

Bypassing the quantization layer means that the codebook must be learned independently of the
reconstruction error. We use an L2 loss between the encoder’s unquantized outputs and quantized
outputs (with a stop-gradient operation applied to the unquantized outputs) to learn the quantization
vectors. To ensure that the encoder commits to a specific set of quantization vectors, a second L2
loss is introduced between the unquantized outputs and the quantized outputs, with the stop-gradient
being applied this time to the quantized outputs.

The PixelCNN network is trained using the cross entropy loss between the quantization vector pre-
dictions and the true quantization vector. We use the Adam optimizer and initialize it with a learning
rate of 1e-3.

A.5 TRAINING OF THE TRACK/SHOWER LABELING MODEL

The quality of the generated images is quantified using a convolutional semantic segmentation net-
work (SSNet) modeled after the network described in Abratenko et al. (2020b). The architecture
of the track/shower semantic segmentation network is the same in Abratenko et al. (2020b) with the
one exception being that dense convolutions are used instead of sparse submanifold convolutions.
The network is structured as a U-Net with ResNet layers. Four pairs of down-sampling and up-
sampling layers are combined before a convolution layer outputs three classes: background, shower,
and track.

The images used to train the track/shower network is related to the data used to train the gener-
ative network. The two data sets were created using the same traditional simulation chain. The
track/shower data set is different because it contains the pixel-wise truth labels. The training sample
consisted of 15k 256x256 examples. A test set with 10k was used to monitor the training of the
network for over-fitting. The network was trained using Adam with a batch size of 16, momentum
of 0.9, and a weight-decay of 1.0e-4. The network was trained for 20 epochs with a starting learning
rate of 1.0e-3. The learning rate was cut in half every 4 epochs. No significant difference in train
versus test set loss and accuracy was seen, so the last saved checkpoint is used for the studies in this
work.

Data augmentation techniques were applied to the training set. This included flipping the image
along the horizontal and vertical axis, transposing the image, and scaling the pixel values across
an individual images by a random value between 0.90 and 1.1 drawn uniformly. The pixel-wise
classification accuracy after training was 98.5% per pixel.

B ADDITIONAL SSNET STUDY

As described in the main text, the output of SSNet is used as a metric to evaluate and compare image
quality. One validation study we did for this metric was to compare the SSNet output on generated
samples produced by the same model after several epochs of training. Our expectation is that the
comparison to the output on test images should improve with increasing epoch. Figure 5 shows two
distributions. The first is a distribution of the number of pixels labeled as shower or track per image.
The second is a distribution of the class score for pixels above threshold. The first tells us how
often pixels within patches with shower-like or track-like features are produced. The second tells us
how confident the network is that the pixel is part of a region that matches track or shower features.
Both plots compare distributions computed for generated images for three successive PixelCNN
training checkpoints to the distribution computed over test images (i.e. not generated). We find
that the generated distributions better match the test distribution as the model is trained longer. In

10



Published as a conference paper at ICLR 2021

Checkpoint Num. Shower Pix. Shower Score Num. Track Pix. Track Score
#1: 100 epochs 0.36 0.22 0.41 0.21
#2: 200 epochs 0.42 0.19 0.22 0.19
#3: 300 epochs 0.37 0.17 0.22 0.17
#4: 400 epochs 0.24 0.13 0.18 0.13

Table 4: KL-divergence between SSNet output distributions calculated from generated images ver-
sus test images. Smaller values are better. This table shows the metric for successive PixelCNN
training checkpoints.

order to provide a score to see improvement, we calculate the KL divergence between the generated
distributions and the test distribution.

0 50 100 150 200 250 300 350 400
num shower pixels per images

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

fr
ac

tio
n 

of
 im

ag
es Test images

Gen: checkpoint 1
Gen: checkpoint 2
Gen: checkpoint 3
Gen: checkpoint 4

0 20 40 60 80 100 120 140 160
num track pixels per image

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

 fr
ac

tio
n 

of
 im

ag
es Test images

Gen: checkpoint 1
Gen: checkpoint 2
Gen: checkpoint 3
Gen: checkpoint 4

(a) Comparing frequency of ssnet labels per
image

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
shower score

3−10

2−10

1−10

fr
ac

. p
ix

. a
bo

ve
 th

re
sh

ol
d

Test images
Gen: checkpoint 1
Gen: checkpoint 2
Gen: checkpoint 3
Gen: checkpoint 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
track score

3−10

2−10

1−10

1
fr

ac
. p

ix
. a

bo
ve

 th
re

sh
ol

d
Test images
Gen: checkpoint 1
Gen: checkpoint 2
Gen: checkpoint 3
Gen: checkpoint 4

(b) Comparing distribution of class scores for
above threshold pixels

Figure 5: SSNet output versus training epoch.

C PUBLICLY AVAILABLE CODE, MODELS, AND GENERATED IMAGE SETS

The code implementing all the models discussed here can be found on github at
https://github.com/NuTufts/LArTPC-VQVAE. Model weights for the VQ-VAE, Pixel-
CNN, and track/shower semantic segmentation network will be uploaded to Zenodo. A sample of
generated images are also provided on Zenodo.

D ADDITIONAL EXAMPLE IMAGES

In this section, we provide additional image samples to view.

11



Published as a conference paper at ICLR 2021

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

Figure 6: Randomly selected examples showing the labels provided by a track-shower segmentation
network on generated images. There are 30 image pairs in total. For each pair, the image to the
left displays the pixel values; the image to the right indicates the class with the largest score as
calculated by the track/shower semantic segmentation network (SSNet): background (dark purple),
track (yellow), and shower (cyan).

12



Published as a conference paper at ICLR 2021

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

Figure 7: Randomly selected examples showing the labels predicted by a track-shower segmentation
network on test images (non-generated) for the VQ-VAE network. There are 30 image pairs in total.
For each pair, the image to the left displays the pixel values; the image to the right indicates the class
with the largest score as calculated by the track/shower semantic segmentation network: background
(dark purple), track (yellow), and shower (cyan).

13


	Introduction
	Methods
	Results
	Conclusions
	Additional details on Methods
	VQ-VAE Implementation Details
	PixelCNN Implementation Details
	Training Data Details
	Generator Model Training Procedure Details
	Training of the Track/Shower labeling model

	Additional SSNet Study
	Publicly available code, models, and generated image sets
	Additional Example Images

