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ABSTRACT

Ensuring physical laws such as the conservation law of energy is important for
physics simulations. Recent studies demonstrated that neural networks success-
fully learn physical dynamics and conserve the system energy using symplectic
integrators or a discrete gradient method. While their approaches depend on the
canonical momentum or velocity, measuring an accurate velocity is troublesome
because it is often measured by a linear interpolation of two points. Without an
accurate velocity, a learned dynamics may be greatly different from the teacher
system. In this paper, we propose a neural network based on discrete-time La-
grangian mechanics. The proposed approach learns the physical dynamics only
from the position data and conserves the energy strictly in discrete-time by using
a discrete gradient method. Experimental results on simulated physical systems
demonstrated that our approach learns the energy surface in the state space accu-
rately and conserves the modeled system energy strictly.

1 INTRODUCTION

Reliable physics simulations should ensure underlying physical laws such as the conservation law
of energy. Recent studies demonstrated that neural networks learn a physical dynamics associated
with the conservation law of energy. Hamiltonian neural networks (HNN) and Lagrangian neural
networks (LNN) learn Hamiltonian and Lagrangian mechanics, ensuring the energy conservation in
continuous time (Greydanus et al., 2019; Cranmer et al., 2020). However, the energy is no longer
conserved after numerical integrators discretize the time. Symplectic recurrent neural networks
(SRNN) and variational integrator networks (VIN) employed symplectic integrators, which conserve
a modified energy in discrete time (Chen et al., 2020; Saemundsson et al., 2020). A discrete gradient
method conserves the system energy strictly in discrete time (Hairer et al., 2006). Matsubara et al.
(2020) proposed the automatic discrete differentiation algorithm, which makes a discrete gradient
method applicable to neural networks, named as DGNet. See Table 1 for comparison.

As the system state, previous approaches used either velocity or canonical momentum as well as
the position. Measuring an accurate velocity is troublesome because it is often measured by a linear
interpolation of two points and suffers from an interpolation error. The Verlet method is a symplectic
integrator applicable to Lagrangian mechanics and depends only on the position (Hairer et al., 2006).
However, no method that conserves the system energy strictly in discrete time is available when only
the position is available.

In this paper, we propose deep discrete-time Lagrangian mechanics, which extends the discrete
gradient method for deep learning to Lagrangian mechanics described only with the position, and
conserves the system energy in discrete time. We evaluate our approach on several simulated physi-
cal systems and demonstrate that it learns the energy surface in the state space more accurately than
comparative approaches and conserves the system energy strictly.
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Table 1: Comparison of Our Approach against Related Ones

HNN LNN SRNN VIN DGNet Ours

Learn Lagrangian mechanics X X X
Learn from finite difference X X X X
Conserve energy strictly X X
Learn from only position X

2 BACKGROUND

In this work, we focus on a physical system associated with the potential energy V , expressed as
a function of the position q, and the kinetic energy T , expressed as a function of the velocity q̇ or
canonical momentum p. Specifically, with a symmetric mass matrix M ,

T = 1
2 q̇
>Mq̇ = 1

2p
>M−1p. (1)

Hamiltonian Mechanics. In Hamiltonian mechanics, a system has a state u = (q p)> and an en-
ergy functionH, called the Hamiltonian. The time evolution follows Hamilton’s canonical equation

dq
dt = ∇pH, dp

dt = −∇qH, (2)

which ensures the conservation law of energy. The chain-rule provides a simple proof as
dH
dt = ∂H

∂u
∂u
∂t = (∇qH ∇pH)(∇pH −∇qH)> = 0. (3)

HNN approximates the Hamiltonian H from the data using a neural network (Greydanus et al.,
2019). WhenH = T + V and Eq. (1) is given, Eq. (2) is rewritten as follows (Zhong et al., 2020).

dq
dt = M−1p, dp

dt = −∇qV (q). (4)

Lagrangian Mechanics. In Lagrangian mechanics, a system has a state u = (q q̇)> and the
Lagrangian L = T − V . The Euler–Lagrangian equation d

dt∇q̇L = ∇qL holds, and it admits the
conservation law of energy. LNN approximates the Lagrangian L (Cranmer et al., 2020), and Deep
Lagrangian networks (DeLaN) approximates the state-dependent mass-matrix M(q) (Lutter et al.,
2019). Given Eq. (1), Newton’s equation of motions is obtained as

Mq̈ = −∇qV (q). (5)

Symplectic Integrator. With a numerical integrator for a computer simulation, HNN and LNN
do not conserve the system energy in general. Symplectic integrators approximate the underlying
symplectic structure and conserve a modified energy in discrete time, but it is not equal to the system
energy. SRNN employed the leapfrog integrator for Hamiltonian mechanics (Chen et al., 2020), and
VIN employed the variational integrator for Lagrangian mechanics (Saemundsson et al., 2020).

Discrete Gradient Method. For conserving the system energy strictly, a discrete gradient method
has been employed (Hairer et al., 2006; Furihata & Matsuo, 2010; Celledoni et al., 2012). A vector
∇H that satisfies the following condition is a discrete gradient of a function H;

H(u)−H(v) = ∇H(u,v) · (u− v), ∇H(u,u) = ∇H(u), (6)

where · denotes an inner product. The first condition indicates a discrete-time counterpart of the
chain-rule, and the second condition ensures the consistency with the continuous-time chain-rule.
With a discrete gradient∇H of the HamiltonianH, a discrete expression of Eq. (2) is given by

q(n+1)−q(n)

∆t = ∇pH(u(n+1),u(n)), p(n+1)−p(n)

∆t = −∇qH(u(n+1),u(n)), (7)

where the superscription (n) denotes the n-th time step, and ∆t denotes the time step size. Thanks to
the discrete-time chain-rule, a discrete-time version of Eq. (3) holds, and it ensures the conservation
law of energy in discrete time. Matsubara et al. (2020) proposed the automatic discrete differential
(ADD) algorithm, which obtains a discrete gradient of an arbitrary computational graph. With the
algorithm, a neural network named DGNet learns discrete-time dynamics of a Hamiltonian mechan-
ics and conserves the system energy strictly in discrete time. However, this approach is not directly
applicable to Lagrangian mechanics.
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3 METHODS

In this section, we propose a discrete gradient method for Lagrangian mechanics. We first begin
with the discrete-time expression of Eq. (4). Since the mass matrix M is supposed symmetric, the
finite difference of the potential energy T (p) between n-th and n + 1-st time steps is

T (p(n+1))− T (p(n)) = 1
2M

−1(p(n+1) + p(n)) · (p(n+1) − p(n)). (8)

Since the gradient of the kinetic energy T (p) is ∇T (p) = M−1p = 1
2M

−1(p + p),
∇T (p(n),p(n+1)) = 1

2M
−1(p(n+1) +p(n)) satisfies the definition of a discrete gradient in Eq. (6).

Then, the discrete-time expression of Eq. (4) can be written as

q(n+1)−q(n)

∆t = 1
2M

−1(p(n+1) + p(n)), p(n+1)−p(n)

∆t = −∇qV (q(n+1), q(n)). (9)

By transforming Eq. (9), we obtain

p(n+1) = −p(n) + 2M q(n+1)−q(n)

∆t , p(n+1) = p(n) −∆t∇qV (q(n+1), q(n)). (10)

Then, the canonical momentum p(n+1) is rewritten as

p(n+1) = M q(n+1)−q(n)

∆t − ∆t
2 ∇qV (q(n+1), q(n)) (11)

By substituting p(n) and p(n+1) into Eq. (9), we eliminate the canonical momentum p and obtain a
numerical scheme only with the position q as follows.

M q(n+1)−2q(n)+q(n−1)

(∆t)2 = − 1
2 (∇qV (q(n+1), q(n)) +∇qV (q(n), q(n−1))). (12)

Since Eq. (12) converges to Eq. (5) as the time step size vanishes, Eq. (12) is a discrete-time expres-
sion of Eq. (5), and therefore, Eq. (12) is considered as a discrete-time Lagrangian mechanics. We
can estimate a next position q(n+1) from the current and last positions q(n) and q(n−1) by implicitly
solving Eq. (12).

We parameterized the potential energy V (q) by a neural network and obtained its discrete gradient
∇qV by the ADD algorithm (Matsubara et al., 2020). At the training phase, we minimized the
mean squared error between the left- and right-hand sides of Eq. (12) for each time step n. Since
the positions q at times n − 1, n, and n + 1 are known, the ADD algorithm was performed only
once to obtain each of the discrete gradients ∇qV (q(n+1), q(n)) and ∇qV (q(n), q(n−1)). One can
obtain the system energy T +V at n-th time step since the potential energy V is modeled by a neural
network, and the kinetic energy T is obtained by substituting Eq. (11) into Eq. (1).

4 EXPERIMENTS AND RESULTS

Experiments. For evaluation, we employed physical systems examined by Matsubara et al. (2020),
namely a mass-spring system, a pendulum system, and a 2-body system. After training, our approach
solved an initial value problem and evaluated the long-term prediction in terms of the mean squared
error. We also employed the leapfrog integrator, which was used by SRNN (Chen et al., 2020). After
a deformation similar to that of our approach, the leapfrog integrator is expressed as

M q(n+1)−2q(n)+q(n−1)

(∆t)2 = −∇qV (q(n)). (13)

This scheme is sometimes called the Verlet method (Hairer et al., 2006), and it is also equivalent to
the variational integrator, used by VIN (Saemundsson et al., 2020). We also employed the symplectic
Euler method, and the Euler method after similar modifications. The details of the experiments are
summarized in Appendix A.

Results. Table 2 summarizes the quantitative results averaged over 15 trials. The top two panels of
Fig. 1 show the predicted trajectories of states and energies from the first two positions; only our
approach and the leapfrog integrator are depicted for visibility. Both methods predicted the state at
a similar level. For the mass-spring and pendulum systems, the proposed approach conserved the
energy accurately, implying that it learned the energy surface in the state space. With the leapfrog
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Figure 1: Results. (top) Position q. (center) Energy. (bottom) Energy modeled by each model.

Table 2: Quantitative results across all three tasks.

Mass-Spring Pendulum 2-Body
Model Position q Energy Position q Energy Position q Energy

Euler 4.48×100 1.23×101 2.96×102 8.54×101 3.71×10−1 8.64×10−4

symplectic Euler 7.09×10−2 1.67×10−3 4.89×10−3 7.45×10−2 1.65×10−4 2.77×10−7

leapfrog 7.09×10−2 6.57×10−4 4.89×10−3 2.04×10−2 1.65×10−4 1.14×10−7

proposed 6.20×10−2 4.52×10−5 5.43×10−3 2.20×10−3 7.31×10−3 3.00×10−6

leapfrog+proposed 8.30×10−2 6.19×10−4 1.47×10−1 8.38×10−4 1.59×10−4 1.01×10−7

integrator, the energy oscillates over a wide range because of the gap between the true energy and
modified energy. The bottom panel of Fig. 1 and Table 3 summarize the variances of the modeled
energy H = T + V . The variance is significantly smaller with the proposed approach. Thanks to
the discrete gradient, the proposed approach conserved the energy that the neural network modeled,
in other words, the proposed approach provides a lower numerical error in the energy. In contrast,
the numerical error of the leapfrog integrator is more significant than the modeling error.

Table 3: Modeled energy.

Model Mass-Spring Pendulum 2-Body
Euler 3.84×10−1 3.85×101 1.35×10−4

symplectic Euler 1.06×10−3 7.15×10−2 1.70×10−7

leapfrog 3.10×10−5 1.15×10−2 2.78×10−9

proposed 2.11×10−12 4.58×10−11 2.42×10−11

For the 2-body system, the pro-
posed approach suffered from a
larger prediction error, which was
caused by a modeling error. We fur-
ther examined an approach named
“leapfrog+proposed”, which used
the leapfrog integrator for training
and the proposed approach for pre-
diction, and found that it predicted
the state and energy more accurately.
Hence, the proposed approach provides a lower numerical error, but there exists room for improve-
ment in a training scheme.

5 CONCLUSION

In this paper, we proposed the discrete-time Lagrangian mechanics, which is based on the discrete
gradient method and implemented on a neural network. The proposed approach learns a certain kind
of Lagrangian mechanics only from the position data, and it ensures the conservation law of energy
strictly in discrete time. Future works include a state-dependent mass matrix M(q) and a training
scheme based on deep equilibrium model (Bai et al., 2019).
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Supplementary Materials
A DETAILS OF EXPERIMENTS

Comparative Models. We employed the leapfrog integrator, the symplectic Euler method, and the
Euler method as the comparative models in Section 4. After a certain modification, these methods
are applicable to datasets composed only of the positions q. We provide details of the modification
here. Given the state u(n) = (q(n), q̇(n)), the leapfrog integrator computes successive estimates
(q(n+1), q̇(n+1)) as

q̇(n+ 1
2 ) = q̇(n) − 1

2
∆tM−1∇qV (q(n)),

q(n+1) = q(n) + ∆tq̇(n+ 1
2 ),

q̇(n+1) = q̇(n+ 1
2 ) − 1

2
∆tM−1∇qV (q(n+1)).

(14)

Only given the positions q(n−1) and q(n), the leapfrog integrator computes the successive position
q(n+1) as

q̇(n− 1
2 ) =

q(n) − q(n−1)

∆t
,

q̇(n+ 1
2 ) = q̇(n− 1

2 ) −∆tM−1∇qV (q(n)),

q(n+1) = q(n) + ∆tq̇(n+ 1
2 ).

(15)

The symplectic Euler method computes successive state (q(n+1), q̇(n+1)) as

q(n+1) = q(n) + ∆tq̇(n),

q̇(n+1) = q̇(n) −∆tM−1∇qV (q(n+1)).
(16)

Only given the positions, the successive state is

q̇(n−1) =
q(n) − q(n−1)

∆t
,

q̇(n) = q̇(n−1) −∆tM−1∇qV (q(n)),

q(n+1) = q(n) + ∆tq̇(n).

(17)

The Euler method is expressed as

q(n+1) = q(n) + ∆tq̇(n),

q̇(n+1) = q̇(n) −∆tM−1∇qV (q(n)).
(18)

Only given the positions, the successive state is

q̇(n−1) =
q(n) − q(n−1)

∆t
,

q̇(n) = q̇(n−1) −∆tM−1∇qV (q(n−1)),

q(n+1) = q(n) + ∆tq̇(n).

(19)

The potential energy V is parameterized by a neural network. We trained these models by minimiz-
ing the error between the predicted and ground truth positions q(n+1). For predicting the successive
position, the leapfrog integrator and the symplectic Euler method do the same. However, because of
the velocity shifted by a half step, their energy at n-th time step differ from each other.

Neural Network Models. Following the study on DGNet (Matsubara et al., 2020), each method
employed a neural network with three layers, 200 hidden units, and tanh activation functions. Each
network had one input unit and one output unit in the mass-spring system and the pendulum system,
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and four input units and one output unit in the 2-body system. Each weight matrix was initialized
as a random orthogonal matrix. Each network was trained using the Adam optimizer (Kingma
& Ba, 2015) with a learning rate of 0.001 and a batch size of 200 in all experiments. We used
2,000 iterations for the mass-spring system, 10,000 iterations for the pendulum system, and 100,000
iterations for the 2-body system.

Datasets. For simplicity, we set the mass matrix M as the identity matrix in all experiments. We
used 25 trajectories, each composed of 101 data points, and ∆t = 0.2 for training on the mass-spring
and pendulum systems, and 800 trajectories, each composed of 501 data points, and ∆t = 0.05
for training on the 2-body system. We generated the training and test datasets by integrating the
derivatives of the ground truth Hamiltonian using a Runge-Kutta method (specifically, the adaptive
Dormand-Prince method).

Results. Just for an improved visibility, we depicted the results of each model separately in Figs. 2—
4.
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Figure 2: Results of the mass-spring system. (top) Position q. (center) True energy. (bottom) Energy
modeled by each model.
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Figure 3: Results of the pendulum system. (top) Position q. (center) True energy. (bottom) Energy
modeled by each model.
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Figure 4: Results of the 2-body system. (top) Position q. (center) True energy. (bottom) Energy
modeled by each model.
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