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ABSTRACT

Recent pandemic events have greatly emphasized the need to understand how hu-
mans navigate in modern day cities for effective public health policy implementa-
tion. In this paper, we propose a two-stage generative model, DeltaGAN, to sim-
ulate realistic human mobility trajectories. Compared with existing work where
time was discretized, DeltaGAN generates continuous visitation time to better cap-
ture temporal irregularity in human mobility behaviors. Conditioned on the gen-
erated time, DeltaGAN synthesizes realistic trajectories by limiting the range of
accessible location candidates. Experimental results demonstrate that our model
achieves consistently better performance than baselines when comparing distribu-
tion similarities with real-world GPS trajectories via 6 individual trajectory and
geographical metrics. We further validate the utility of DeltaGAN on COVID-19
spread simulation and observe the diffusion process under generated trajectories
is consistent with that under real data.

1 INTRODUCTION

Understanding how humans navigate in modern day cities is critical for urban planning and location-
based services optimization (Asgari et al., 2013), e.g., traffic congestion mitigation (Song et al.,
2016a; Calabrese et al., 2010), disaster management (Aschenbruck et al., 2004; Song et al., 2016b),
network support (Lee et al., 2009; Rhee et al., 2011), and epidemic modeling (Feng et al., 2020),
etc. However, it is often difficult to gain access to large-scale city-wise mobility trajectory data of
high quality in practice due to privacy concerns and limited availability (Feng et al., 2020). To better
understand human mobility behaviors, learning to simulate realistic mobile trajectories has therefore
become a major subject of many recent research efforts.

Based on highly simplified assumptions of human mobility patterns, previous work treated individu-
als’ mobility behaviors as Markov chains, where calculated transitional probabilities were calculated
for location generation (Song et al., 2004; Shokri et al., 2011). Motivated by the success of gener-
ative models in computer vision tasks (Goodfellow et al., 2014), recent work proposed a standard
CNN-based GAN to generate trajectory images (Ouyang et al., 2018) or leveraged Reinforcement
Learning algorithms to generate discrete locations (Feng et al., 2020). However, the majority of
existing work (see A.1) addressed the trajectory generation problem by discretizing the temporal
space with fixed-length sequence generation for tractability consideration. Compared with fine-
grained signals from GPS data, such binning approaches learn from coarse signals and inevitably
produce less faithful trajectories.

To simulate realistic mobility trajectories, we propose a deep generative model called DeltaGAN,
which factorizes the trajectory generation problem into continuous-time and time-conditioned loca-
tion generation. To focus on the most informative moments in the spatiotemporal sequence (Pertsch
et al., 2020), we view each trajectory as a sequence of person-entering-location events and employ
Wasserstein GAN-GP (Gulrajani et al., 2017) to generate travel time (or stay duration). The times
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Figure 1: The proposed DeltaGAN includes a continuous-time generator GT and a time-conditional
location generator GL with Gaussian noise z, together with their discriminators DT and DL.
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are further utilized to train the location generator, where the realistic mobility range is encoded for
location modeling. Our contributions are summarized as follows:

• End-to-end Generation: We propose a novel two-stage generative model DeltaGAN to simu-
late mobility trajectories with continuous-time and time-conditioned location generation.
• Distribution Similarity: Compared with existing deep predictive and generative approaches,

DeltaGAN achieves consistently good performance with high distribution similarity to real-world
GPS trajectories both in temporal and spatial aspects across 6 trajectory and geographical metrics.
• Application Utility: We further validate the utility of DeltaGAN on COVID-19 spread simula-

tion and observe the diffusion process under generated trajectories is consistent with that under real
data.

2 METHODOLOGY

Figure 1 presents the proposed DeltaGAN architecture, which includes a continuous-time generator
GT and a time-conditional location generator GL along with their discriminators DT and DL.

2.1 SETTING

Human mobility data contains spatial-temporal trajectories S = [x1, x2, . . . , xN ] where each xi is
a tuple (ti, li) representing a visiting record, with ti (0 ≤ ti < 24) denoting the ith timestamp
and li denoting the location (lat,long) of the record. Since it is often intractable to model the
joint distribution P(S), especially for long sequences with large N , we made the common simpli-
fying assumptions to factorize the joint probability, P(S) = P(x1)

∏N
t=2 P(xt|x1:t−1), treating the

modelling approach as a sequential process. Following recent work (Feng et al., 2020), we dis-
cretize GPS coordinates into an M ×M grid L containing up to 3 digits after the decimal point of
coordinates.

2.2 CONTINUOUS-TIME GENERATION

We view a mobility trajectory as a spatial-temporal point process with each event denoting a person
entering a new location. Instead of binning timestamps into large discretized time slots, trajectories
are viewed as sequences of events happening at irregular intervals, which allow us to generate fine-
grained continuous trajectories unlike previous approaches. Formally, a temporal point process
(TPP)1 is a random process whose realizations consist of a sequence of strictly increasing arrival
times T = [t1, ..., tN ], which can be equivalently represented as a sequence of strictly positive
inter-event times τi = ti − ti−1 ∈ R+. The conditional intensity function λ(t|Hti) models the
dependency of the next arrival time t on the history Hti = {tj ∈ T |j < i}. By integrating, the
conditional probability density function of the time τi until the next event, P(τi|Hti) = λ∗(ti−1 +
τi) exp(−

∫ τi
0
λ∗(ti−1 + s)ds), (∗) denotes the dependence on Hti (Daley & Vere-Jones, 2007).

1For simplicity, we now consider only the time dimension, which can be easily factored out in most spatial-
temporal point process formulation.
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Our intensity-free approach leverages GANs to directly model P(τi|Hti), inspired by (Shchur et al.,
2019). Instead of generating the continuous sequence T , generating the isomorphic sequence τi’s
let us explicitly enforce the monotonically increasing properties of the trajectory sequence. We
can retrieve the generated continuous time sequence by taking the cumulative sum of τ . Since
each trajectory represents a person’s daily movements, τ1 in the sequence denotes the starting time
of the trajectory, where τ1 = t1 − t0, and t0 is set to be 12:00 AM. This models the mobility
pattern of when a person typically starts their day. We leverage the off-the-shelf implementation of
WGAN-GP with a recurrent generator GT and an MLP discriminator DT . GT takes a sequence
of random variables z = [z1, . . . , zN ], zi ∼ N (0, I) and sequentially generates the sequence of
duration [τ1, . . . , τN ] using a bidirectional LSTM. Importantly, we note an additional benefit of
modelling the τ ’s, which allows for a natural interpolation between real and generated samples
for gradient penalty. A toy example of the linear α interpolation between τ real = [1.0, 0.0, 0.0]
and τgen = [11.0, 0.5, 1.5] gives a meaningful sequence τα=0.5 = [6.0, 0.25, 0.75] with an “in-
the-middle” starting time 6:00AM and shorter stay durations (15 mins, 45 mins). This drastically
helps with providing stable gradients during training. We also leverage discriminator packing from
PacGAN (Lin et al., 2018) for DT in addition to gradient penalty to further help reduce mode
collapse, which can occur when the model focuses on generating very realistic but short trajectories.

2.3 CONDITIONAL SPATIAL GENERATION

Since generating discrete locations breaks the gradient propagation from the discriminator to the
generator, we follow widely used techniques in text generation (Yu et al., 2017) to bypass the dif-
ferentiation problem via gradient policy updates. Formally, the generation procedure is viewed as a
Markov Decision Process (MDP), where the agent is a generative model GL that produces the loca-
tions L = [l1, . . . , lN ], lt ∈ L. At time step t, the state is the partial trajectory Lt−1 = [l1, . . . , lt−1],
the action is the next location lt, and reward is the loss from the discriminator DL. We additionally
condition the stochastic policy GL on the generated duration dt to get GL(lt|L1:t−1, dt). We train
GL parameterized by θ via policy gradient with the gradient of the expected end reward RN ,

∇θE
[
RN |l0

]
=

N∑
t=1

Elt∼GL(lt|Lt−1,dt)

[
QDL(Lt−1, lt)∇θ logPGL

θ (lt|Lt−1, dt)
]

where the expected cumulative reward QDL is the estimated probability of being real or fake by the
discriminator, QDL(s = LT−1, a = lT ) = DL(LT ). DL is a recurrent network and PGL

θ is the
probability of selecting the next location given the history and stay duration. Based on the above
gradient∇θ, the generator GL is updated by θ ← θ + α∇θ , where α is the learning rate.

2.4 MODEL TRAINING

For stable learning, we perform a two-stage training pipeline, which includes a pre-training step for
both the continuous-time generator GT and the conditional location generator GL followed by an
iterative training step between GT and GL. Using real time samples from the mobility trajectories,
we pre-train the time generator GT and its discriminator DT using the WGAN-GP loss. For the
location generator GL, we pre-train the network using maximum likelihood estimation (MLE) with
the trajectories’ stay durations and locations. In the iterative step, we alternate between training the
pair GT /DT using WGAN-GP and the pair GL/DL conditioned on time using policy gradients.

3 EVALUATIONS

Dataset. We utilize the GPS trajectory dataset collected by MSRA Geolife project from 182 users
in a period of over five years (Zheng et al., 2010). To generate city-wise mobility data, we keep
the trajectories within the 5-th Ring Road of Beijing (50, 652 grids covering 39.85◦N∼40.0◦N,
116.25◦E∼116.5◦E) and reduce the highly frequent sampling rate by considering records only when
the person enters the location for the first time. There are 11, 375 trajectories with 31.531 records
on average, and the average daily traveling duration and distance are 1.945 hours and 9.028 km.

Compared Approaches. We compare the performance of state-of-the-art baselines from Markov,
Deep Prediction Models and Deep Generative Models.

•Markov: 1) First-order MC (Song et al., 2004): It defines the state as the visited location and as-
sumes the next location only depends on the current one, so that a transition matrix is constructed to

3



Published as a workshop paper at ICLR 2021 SimDL Workshop

Table 1: Distribution comparison between real and generated mobility data. For all the metrics,
lower values indicate more realistic trajectories. We marked the best result with boldface.

Individual Trajectory Metrics Geographical Metrics

Models Distance Radius Duration DailyLoc P (r) P (r, t)

Markov First-order MC 0.56113 0.10059 0.58858 0.37374 0.43219 0.81836
HMM 0.45217 0.52043 0.10166 0.39246 0.38329 0.82717
IO-HMM 0.30730 0.15118 0.72849 0.66639 0.60712 0.82690

Deep
Prediction
Models

GRUPred 0.11441 0.17767 0.25546 0.55544 0.48476 0.82401
TransDecoder 0.09735 0.16273 0.28388 0.56912 0.51261 0.82423
TransAutoencoder 0.16209 0.22480 0.22952 0.54911 0.47934 0.82441

Deep
Generative
Models

GRU-VAE 0.82830 0.57407 0.15602 0.71901 0.58838 0.82190
TransVAE 0.83198 0.67098 0.20954 0.62373 0.51397 0.82079
TrajGAN 0.82075 0.72006 0.16102 0.42136 0.47586 0.79298
ARAE 0.67968 0.57447 0.60294 0.44594 0.50957 0.82129
SeqGAN 0.11074 0.16360 0.27096 0.57523 0.57125 0.82806

DeltaGAN (Ours) 0.10553 0.06677 0.00561 0.35276 0.30523 0.80262

capture the first-order transition probability among locations; 2) HMM (Krumm & Horvitz, 2004):
it sets up with discrete emission probability and is optimized using the Baum-Welch algorithm (Ra-
biner, 1989); 3) IO-HMM (Yin et al., 2017): Initial, transition and emission models work together
to maximize the likelihood of observed sequences.
•Deep Prediction Models: Motivated by text generation with language models (Radford et al.,

2018; Raffel et al., 2019), predictive models can be utilized to generate trajectories starting with a
special token in an autoregressive way: 1) GRUPred (Cho et al., 2014): Gated Recurrent Units are
utilized to predict next location given historical visited locations; 2) TransDecoder (Liu et al., 2018):
A multi-layer Transformer decoder is utilized for location prediction; 3) TransAutoencoder (Vaswani
et al., 2017): It builds an encoder to extract information from historical time data and feeds them to
a decoder for sequential location generation.
•Deep Generative Models: We evaluate the following variants of variational autoencoders

(VAEs) (Kingma & Welling, 2013) and generative adversarial networks (GANs) (Goodfellow et al.,
2014): 1) GRU-VAE: it adopts the vanilla VAE architecture equipped with GRU for sequence gener-
ation; 2) TransVAE: Both the encoder and decoder in the vanilla VAE are designed with the Trans-
former architecture (Vaswani et al., 2017); 3) ARAE (Zhao et al., 2018): It trains a GAN model to
generate a prior which indistinguishable from the real latent representations learned by an autoen-
coder; 4) TrajGAN (Ouyang et al., 2018): A standard CNN-based GAN model is utilized to generate
the trajectories in 2D matrices; 5) SeqGAN (Yu et al., 2017): Discrete location data is generated by
combining Reinforcement Learning and GAN.

Evaluation Metrics Following the common practice in existing work (Ouyang et al., 2018; Feng
et al., 2020), we adopt the following individual trajectory and geographical metrics to evaluate the
distribution similarity (Jensen-Shannon divergence) between real and generated mobility data: 1)
Distance: the daily cumulative travel distance per trajectory; 2) Radius: the radius of gyration for
a daily trajectory; 3) Duration: the total stay duration of each visited location; 4) DailyLoc: the
number of unique locations in the daily trajectory; 5) P(r): the visiting probability of one location
r; 6) P(r,t): the visiting probability of one location r at time t.

3.1 DISTRIBUTION SIMILARITY: MAIN RESULTS

We list the performance of all generative methods in Table 1. With much lower distribution dis-
crepancy over both individual trajectory and geographical metrics, the proposed DeltaGAN is able
to generate more consistent human mobility data with the real ones both in spatial and temporal
aspects. Focusing on generating continuous time as the first step, DeltaGAN can better capture the
Duration for a person to stay in one location compared with other deep learning approaches, where
event time is not dedicatedly learned and generated. Conditioned on the generated continuous event
time, the location generator of DeltaGAN is capable of reducing the action space implicitly than deep
learning approaches such as GRUPred and SeqGAN. Considering location visitation probability P(r)
and P(r,t), we also observe consistent location popularity from real and DeltaGAN.
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Figure 2: (a) Geographical visualization of 10, 000 real and generated trajectories. We set the first
95% percentile of visit times as the colormap range for clarity. (b) Utility of generated mobility data
by comparing the simulated spreading process of COVID-19 with real data.
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In Fig. 2a, we show the qualitative performance of generative models by visualizing the distribution
and popularity of visited locations. Compared with the real and other generative approaches, Delta
successfully recognizes the relative popularity of different places in the city, e.g., main ring roads
(bright horizontal and vertical lines), highways (bright lines spreading out in in the four corners), and
the most popular Haidian District (brightest area in the northwest). Compared with TransAutoen-
coder and SeqGAN, we also notice that popularity intensity per location in synthetic data from Delta
is much closer to the real case (color bars of different ranges in Fig. 2a, see Sec A.2 for details).

3.2 APPLICATION UTILITY: COVID-19 SPREADING SIMULATION

We analyze the utility of generated mobility data in studying the spreading of COVID-19 with SIR
model. We follow the recent work (Zeighami et al., 2020; Rambhatla et al., 2020) for epidemic
diffusion simulation in 7 days: 1) 1, 5000 individuals start as either Susceptible (S) with probability
0.9 or Infected (I) with probability 0.1; 2) When an S individual u goes within 0.1 meter of an
Infected and Spreading (IS) for at least 1 hour, then u immediately becomes Infected and Not
Spreading (INS) with probability 0.5 at time t; 3) At time t + tIS with tIS ∼ N(5, 10) in day,
u becomes IS; 4) At time t + tR with tR ∼ N(12, 24) in day, u becomes Isolated or Recovered
(R). We run simulations with human mobility data, and calculate (mean) absolute percentage error
between real and generated data on the number of different populations (S, I ,R): the number of S or
I individuals at the end of the 7-th day and the daily number ofR individuals from the 7-th day till the
day when all infected individuals become recovered. As shown in Fig. 2b, the proposed DeltaGAN
model benefits COVID-19 Spreading study with small divergence in population distribution.

4 CONCLUSION

To better understand human mobility behaviors, we propose the novel generative modelDeltaGAN
to synthesize continuous-time mobile trajectories. By viewing human trajectories as sequences of
events, DeltaGAN can generate realistic trajectories without discretizing visitation times and learn
more accurate mobility dynamics, which is reflected in our evaluation and diffusion simulation.

Disclaimer This paper was prepared for informational purposes in part by the Artificial Intelli-
gence Research group of JPMorgan Chase & Co and its affiliates (“JP Morgan”), and is not a product
of the Research Department of JP Morgan. JP Morgan makes no representation and warranty what-
soever and disclaims all liability, for the completeness, accuracy or reliability of the information
contained herein. This document is not intended as investment research or investment advice, or a
recommendation, offer or solicitation for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for evaluating the merits of participating in
any transaction, and shall not constitute a solicitation under any jurisdiction or to any person, if such
solicitation under such jurisdiction or to such person would be unlawful.
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A APPENDIX

A.1 RELATED WORK

Earlier literature treats an individual’s movement behavior as a Markov chain, where the probability
of visiting one location at the next time step only depends only on the current location. For example,
First-order MC (Song et al., 2004) generated trajectories by calculating the transition matrix be-
tween locations and Time-dependent MC (Shokri et al., 2011) went one step further by constructing
separate matrices for different periods in a day. General Hidden Markov Models (HMM) (Krumm
& Horvitz, 2004) and its variant IO-HMM (Yin et al., 2017) were also leveraged to generate hu-
man mobility data by assuming another unobservable process whose behavior depends on individ-
uals’ movement. Motivated the success of deep generative models in computer vision tasks, recent
work proposed to develop generative adversarial networks (GANs) to generate synthetic trajectories
which were indistinguishable from real ones by a discriminator. For instance, TrajGAN (Ouyang
et al., 2018) mapped trajectories into 2D images and leveraged standard CNN-based GANs to gen-
erate virtual trajectory images. (Feng et al., 2020) treated human mobility as a partially observable
Markov Decision Process (POMDP) and built upon SeqGAN (Yu et al., 2017) — a Reinforcement
Learning approach to generate sequences of visited locations. However, the majority of existing
work split trajectories with a coarse-grained time interval and then treat the mobility synthesization
as a time series generation task. In contrast, we propose DeltaGAN to better capture the under-
lying dynamics of human mobility by generating continuous-time human mobility trajectory via
inter-event durations.

A.2 TRAJECTORY VISUALIZATION AND ANALYSIS

We visualize both real and generated mobility data from all baselines in Fig. 3. In general, the
majority of generative approaches can recognize the ring roads and the most popular Haidian District
in Beijing. We observe that TrajGAN can capture the busiest locations in the real world much
better than other methods, but the scale of visitation frequency is much larger than the reality, e.g.,
the brightest location has visitations expanded from 25 to 500. This indicates that TrajGAN can
distinguish POIs (Point of Interest) in the city, but the underlying mobility pattern is not fully learned
and hence misrepresented in the generated trajectories. That also explains why poor performance
from TrajGAN is shown in Table 1 from most of the spatial and temporal metrics. Although IO-
HMM achieves moderate performance when evaluated by metric Distance and Radius in Table 1,
most of the popular locations are missing in the generated trajectories. We attribute its failure to the
loose assignment of home and work locations without any prior knowledge or post-checking.
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Figure 3: Geographical visualization of 10, 000 real and generated trajectories from different mod-
els. To clearly show both the most and least visited locations, we set the first 95% percentile of visit
times as the colormap range for mobility data from all models except GRU-VAE, which uses 98%
percentile instead due to scarce location visitations.
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