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ABSTRACT

Time integration of models of physical systems is a core task of scientific computing.
Recently, there has been a surge of interest in data-driven methods that learn from
data a model of the physical system and then integrate it in time to make predictions.
This work introduces benchmarks for evaluating data-driven methods on a variety
of physical systems and proposes evaluation scenarios. The proposed benchmarks
comprise three representative physical systems (spring, spring mesh, wave) and a
collection of classical time integrators as baselines. For demonstration purposes,
we apply several data-driven methods to the benchmarks and report accuracy and
computational efficiency.

1 INTRODUCTION

Integrating models of physical systems in time is a core task in scientific computing. Traditional
time integrators require knowledge of the physical model of the system of interest, which is given
typically in the form of partial differential equations (PDEs). However, if the physical model is
unknown, this classical approach is not applicable. Recently, there has been interest in methods that
learn governing equations, and how to integrate them, from data sampled from the system of interest.
A successful adoption of such data-driven methods into scientific computing pipelines requires a
solid and exhaustive assessment of their performance — an increasingly challenging task given the
large diversity of physical systems and corresponding data-driven solutions, combined with the lack
of standardized sets of problems and comparison protocols and metrics.

In this work, we introduce an extensible benchmark pipeline, by proposing: (1) a set of simple,
yet representative, physical models, with a range of training and evaluation boundary conditions,
coefficients, and parameters, as well as reference, high-accuracy solutions which are used to evaluate
data-driven methods, (2) reference implementations of traditional time integration algorithms, which
are used as baselines for evaluation, and (3) implementations of widely used data-driven methods,
including physics-agnostic multi-layer perceptrons (MLPs), efficient kernel machines, and geometric
deep learning models based on graph neural networks. Further, our benchmark suite is modular,
permitting extensions with limited code changes. We focus on the setting where the physical model
is unavailable during training, mimicking situations in computational science and engineering with
ample data and a lack of models. Our preliminary numerical experiments show promising results for
the considered data-driven methods and at the same time reveal opportunities for improvements.

2 RELATED WORK

The purpose of the proposed benchmarks is to enable comparisons of different learning-based methods
in terms of their accuracy and efficiency. We briefly review several streams of learning methods for
physical systems:
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Models for learning physics. One line of work aims to understand how neural networks can be
structured and trained to reproduce known physical system behavior, with the goal of designing
general methods applicable in a variety of settings (Greydanus et al., 2019; Sanchez-Gonzalez et al.,
2019; Chen et al., 2020; Sanchez-Gonzalez et al., 2018; Raissi et al., 2017; 2019; Lu et al., 2019;
Haghighat et al., 2020; Tartakovsky et al., 2018).

Accelerating solving PDEs. Another line of research aims to develop a variety of techniques to
accelerate solving PDEs. Typically, these methods are developed for specific PDEs and a specific
restricted range of problems. For example, fluid dynamics problems (Ribeiro et al., 2020; Kim et al.,
2019; Xie et al., 2018), with particular applications to cardiovascular modeling (Liang et al., 2020;
Kissas et al., 2020) and aerodynamics (Umetani & Bickel, 2018); or solid mechanics simulation
tasks, including stresses (Nie et al., 2020; Liang et al., 2018; Maso Talou et al., 2020; Khadilkar et al.,
2019; Li et al., 2018; Lia et al.). In cases where the governing equations are not given, the learning
task becomes approximating them from data (Packard et al., 1980; Crutchfield & Mcnamara, 1987;
Antoulas & Anderson, 1986; Gustavsen & Semlyen, 1999; by Athanasios C. Antoulas et al., 2020;
Nakatsukasa et al., 2018; Brunton et al., 2016; Schaeffer, 2017; Schaeffer et al., 2018; Schmid & J.,
2008; Schmid, 2010; Tu et al., 2014; Qian et al., 2020).

Predicting quantities of interest. Yet another line of work is concerned with problems where one is
interested solely in quantities of interest (e.g., compliance, drag), which typically are obtained via
functionals of solutions, but the solution fields themselves are of less importance (Zhu et al., 2019;
Baque et al., 2018; Umetani & Bickel, 2018; Papila et al., 2016; White et al., 2019; Sasaki & Igarashi,
2019; Lin et al., 2018; Liu et al., 2020; Hoole et al., 2020).

3 BACKGROUND AND PROBLEM SETUP

PDEs, dynamical systems, and time integration. Consider a time-dependent PDE of the form
∂tu = L(u), where u is the solution function and L is a potentially nonlinear operator that includes
spatial derivatives of u. By discretizing in space, one obtains a dynamical system such as the
(first-order) system

ẋ(t) = f(x(t)) (1)

with an N -dimensional state x(t) ∈ RN at time t ∈ [0, T ]. The function f is Lipschitz to ensure
solution uniqueness and the initial condition is denoted as x0 ∈ RN . If we have a second-order
system q̈(t) = f(q(t)), then we consider its formulation via position q and velocity p as a first-
order system [q̇(t); ṗ(t)] = [p(t); f(q(t))]. To numerically integrate (1), we choose time steps
0 = t0 < t1 < · · · < tK = T . Then, a time integration scheme (Süli & Mayers, 2003; Hairer et al.,
2009; Hairer & Wanner, 2009) gives an approximation xk ≈ x(tk) of the state x(tk) at each time
step k = 1, . . . ,K.

Problem setup and learning problems. Given M initial conditions x(1)0 , . . . , x
(M)
0 ∈ RN and the

corresponding M trajectories X(i) = [x
(i)
0 , . . . , x

(i)
K ] ∈ RN×(K+1), i = 1, . . . ,M obtained with

a time integration scheme from dynamical system (1), we consider the problem of learning an
approximation f̃ of the right-hand side function f (1). This gives an approximate ˙̃x(t) = f̃(x̃(t)) that
is then numerically integrated to produce a trajectory X̃ for an initial condition x̃0. The aim is that X̃
approximates well the true trajectory X obtained with f from (1) for the same initial condition.

To assess the learned models, we evaluate them on their ability to predict derivatives producing
good approximate trajectories from randomly sampled initial conditions. During evaluation, we use
initial conditions drawn independently from those used to produce training data, both from the same
distribution as the training samples, as well as from a distribution with support outside the training
range. We train networks on data sets of various sizes. For details, see Appendix B.

Data-driven time integration schemes. We consider a variety of common machine learning meth-
ods: a k-nearest neighbors (KNN) regressor which memorizes the input-output pairs from the training
set, a neural network kernel, and two simple MLP architectures. Additionally, we consider a graph
neural network derived from Pfaff et al. (2020). This network predicts accelerations for each system,
and integrates these to produce predictions for the velocity which are then provided to each of the
numerical integration methods when computing trajectories. The graph structure is selected to match
a static mesh chosen for each of our systems. Architecture details are provided in Appendix B.
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Figure 1: Representative initial conditions for the three systems. Each two state components: a
position q and momentum p. Shaded blue regions denote the sampling range for initial states.

4 BENCHMARK SYSTEMS

The core of our proposed benchmark are the physical systems which we use to generate ground truth
data for training and subsequent evaluation. We selected three representative systems of increasing
complexity (Appendix C). For each of these systems, training and evaluation trajectories are produced
by backward (implicit) Euler integration with a very small timestep. Sample initial conditions for
these systems are illustrated in Figure 1.

Spring. One of the simplest physical systems is a single spring with rest length zero oscillating in a
space of one dimension: [q̇(t), ṗ(t)] = [p(t),−q(t)]. States evolve in a one-dimensional space.

Spring Mesh. A direct extension of the single spring is a set of masses connected by springs. This
system has a larger configuration space and allows testing the scalability of data-driven methods.
Here, particles are arranged in a unit grid, with springs along the grid and across diagonals. Masses
and states are two-dimensional.

Wave. Moving away from springs, we adopt a linear wave system closely following Peng & Mohseni
(2016) to test time-integration of a more challenging PDE. On a space [0, 1) with periodic boundary
conditions we have ∂ttu = c2∂xxu , where c = 0.1 is the wave speed. We represent this as a
first-order system with [

q̇(t)
ṗ(t)

]
=

[
0 I

c2Dxx 0

] [
q(t)
p(t)

]
, (2)

where Dxx ∈ Rn×n corresponds to the three-point central difference approximation of the spatial
derivative ∂xx. Here, we discretize the one-dimensional space with n = 125 grid points.

5 NUMERICAL EXPERIMENTS

We compare the performance of each of the considered methods on our three benchmark systems.
For each system, we select a time step size at which integration succeeds with acceptable error. We
train the methods on trajectory snapshots from randomly sampled initial conditions, and measure the
accuracy of the trajectories resulting from the learned approximation of the right hand side function
with several integration schemes as well as the computational overhead of the learned methods.

Our results show that the learning methods successfully approximate these systems even without
access to the underlying model. Potential improvements could address accuracy, data requirements,
and computational overhead. In most cases the kernel method—though one of the simplest models—
performs well. The graph network also demonstrates impressive stability, even producing good results
outside of the distribution of training samples. This may be due to the encoding of the true mesh
structure directly into the network architecture, demonstrating the potential of such techniques.

6 CONCLUSION

A standardized set of problems is valuable to provide consistent accuracy and performance mea-
surements as more learning methods for data-driven time integration emerge. The focus of our
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Figure 2: Evaluation error distribution for all systems. MSE is averaged across all evaluation
snapshots from all evaluation trajectories, as well as three independent trainings for each neural
network, showing mean error over time from different initial conditions and as a result of training.
Darker colors represent larger training sets, and the final hatched boxes show out-of-distribution error.
Integration schemes are forward Euler, leapfrog, RK4, and backward Euler.

Table 1: Relative slowdowns for equivalent error for learned method. For each base integrator, match
error rates with the learned method in the column by increasing time step sizes. Each cell reports the
resulting time slowdown factor and (after the slash) the time step size scaling necessary.

Base Integrator mlp-w mlp-n nn-kernel gn knn

FE RK4 FE RK4 FE RK4 NUL FE RK4

Spring

FE 19.9 / 1 19.9 / 1 23.2 / 1 23.2 / 1 19.2 / 1 19.2 / 1 376.2 / 1 106.8 / 1 106.8 / 1
LF 29.9 / 32 29.9 / 32 34.7 / 32 34.7 / 32 28.9 / 32 28.9 / 32 506.7 / 4 160.2 / 32 160.2 / 32
RK4 19.9 / 1 19.9 / 1 23.2 / 1 23.2 / 1 19.2 / 1 19.2 / 1 541.0 / 32 106.8 / 1 106.8 / 1
BE 29.8 / 1 29.8 / 1 34.6 / 1 34.6 / 1 28.8 / 1 28.8 / 1 562.1 / 1 159.6 / 1 159.6 / 1

Wave

FE 69.8 / 4 69.8 / 4 50.7 / 8 50.7 / 8 104.7 / 4 104.7 / 4 873.6 / 2 318.8 / 8 318.8 / 8
LF 103.2 / 128 103.2 / 128 39.5 / 128 39.5 / 128 154.7 / 128 154.7 / 128 2049.4 / 64 248.0 / 128 248.0 / 128
RK4 123.3 / 128 123.3 / 128 47.1 / 128 47.1 / 128 184.9 / 128 184.9 / 128 1652.7 / 128 296.2 / 128 296.2 / 128
BE 29.7 / 16 29.7 / 16 58.9 / 64 58.9 / 64 230.9 / 64 230.9 / 64 183.6 / 4 370.0 / 64 370.0 / 64

Spring
Mesh

FE 3.5 / 8 3.5 / 8 2.8 / 8 2.8 / 8 4.0 / 16 4.0 / 16 34.2 / 8 102.7 / 16 102.7 / 16
LF 3.5 / 8 3.5 / 8 2.8 / 8 2.8 / 8 4.0 / 16 4.0 / 16 34.2 / 8 102.7 / 16 102.7 / 16
RK4 3.5 / 8 3.5 / 8 2.8 / 8 2.8 / 8 4.0 / 16 4.0 / 16 34.2 / 8 102.7 / 16 102.7 / 16
BE 3.5 / 8 3.5 / 8 2.8 / 8 2.8 / 8 4.0 / 16 4.0 / 16 34.2 / 8 102.7 / 16 102.7 / 16
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benchmarks is on simplicity and the setting where training samples are available but access to the
underlying model is not. In the future, we hope to extend this benchmark suite to include additional
systems with different physical behavior and to cover a wider range of data-driven tasks in scientific
computing.
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A NUMERICAL INTEGRATION SCHEMES

We briefly review the time integration schemes that we consider in this study: forward Euler (FE),
leapfrog (LF), Runge-Kutta 4 (RK4), and backward Euler (BE). Other sources also discuss these
integration schemes, for example Süli & Mayers (2003); Hairer et al. (2009); Hairer & Wanner
(2009).

Time integration with the explicit Euler method leads to

xk = xk−1 + δt f(xk−1),

where δt > 0 is the time step size and f is the right-hand side function. The explicit Runge-Kutta 4
scheme is

xk = xk−1 +
δt

6
(h1 + 2h2 + 2h3 + h4) ,

where

h1 = f(xk−1) h2 = f(xk−1 + δt /2h1)

h3 = f(xk−1 + δt /2h2) h4 = f(xk−1 + δt /2h3)

for k = 1, . . . ,K. For leapfrog integration we separate the components of the state x = (q, p) and
f(qk, pk) = (q̇k, ṗk) and compute:

pk+1/2 = pk +
δt

2
ṗk

qk+1 = qk + q̇(qk, pk+1/2) δt

pk+1 = pk+1/2 +
δt

2
ṗ(qk+1, pk+1/2)

where the notation q̇(qk, pk+1/2) denotes the q̇ component of f(qk, pk+1/2) and analogously for ṗ.

We also consider the implicit Euler method, which is given by the potentially nonlinear equation

xk − δt f(xk) = xk−1

that is solved in each time step k = 1, . . . ,K.

B LEARNING METHODS

In this section we provide details on the training and implementation of the learning methods tested
in this work. The neural network methods used in this work are implemented in PyTorch (Paszke
et al., 2019).

8
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B.1 TRAINING

The learning methods considered in this work are trained to approximate the right hand side function
for each system. That is, we train a function f̃θ such that f̃θ(q(t), p(t)) ≈ (q̇(t), ṗ(t)). This training
is conducted supervised on ground truth snapshots gathered from the underlying models. For each
system we randomly sample initial conditions and each of these is then numerically integrated to
produce a trajectory. Each trajectory includes state samples (q, p) as well as target derivatives (q̇, ṗ)
used for training.

Table 2: Training parameter values

System # Train Trajectories # Eval Trajectories Time Step Size # Steps

Spring 10, 500, 1000 30 0.00781, ÷128 805
Wave 10, 25, 50 6 0.00049, ÷8 10205
Spring Mesh 25, 50, 100 15 0.00781, ÷128 805

Table 2 lists the parameters used to generate trajectories for training and evaluation. Training sets
of three sizes are generated, each containing the specified number of trajectories. The systems are
integrated at the listed time step sizes, but the ground truth data is subsampled further by the factor
shown after ÷ in the table: the integration schemes are run at a smaller time step and intermediate
computations are discarded.

Training is done with the Adam (Kingma & Ba, 2014) optimizer for all neural networks, except the
kernel which uses standard stochastic gradient descent with learning rate 0.001 and weight decay
0.0001. With the Adam optimizer, no weight decay is used, and the graph network uses a learning
rate of 1× 10−4 while other networks use 1× 10−3. The number of training epochs varies based
on the target system. On spring, wave, and spring mesh the graph networks were trained for 25, 25,
and 150 epochs respectively. The other networks trained for 400, 250, and 800 epochs on the same
systems. We train each neural network three times from random initialization, and average errors
over all time steps of each evaluation trajectory, for each trained network.

B.2 KNN REGRESSOR

We use a k nearest neighbors regressor to predict the value of the state derivatives, using k = 1.
With this method f̃θ(q, p) finds the closest matching point in the training set, and uses that point’s
associated derivatives as its approximation for (q̇, ṗ). We use the KNN implemented in scikit-learn
(Pedregosa et al., 2011).

B.3 KERNEL METHODS

Kernel methods provide a nonparametric regression framework (Schölkopf & Smola, 1998). In
this benchmark we consider dot-product kernels of the form k(x, x′) = η(〈x, x′〉), which can be
efficiently implemented using random feature expansions (Rahimi et al., 2007) via the representation

k(x, x′) = Ez∼ν [ρ(〈x, z〉)ρ(〈x′, z〉)]

≈ 1

L

L∑
l=1

ρ(〈x, zl〉)ρ(〈x′, zl〉) ,

where ν is a rotationally-invariant probability distribution over parameters and zl ∼ ν iid. The
resulting maps x 7→ ρ(〈x, zl〉) are random features, associated with a shallow neural network with
‘frozen’ weights. In our experiments, we use ρ = ReLU and L = 32768 (for the single spring system
we set L = 4096) random features and train using kernel ridge regression.

B.4 MLP

We apply simple MLP networks consisting of two architectures: one “narrow” and one “wide”
abbreviated as “mlp-n” and “mlp-w” above. The wide network has two layers (one hidden, with a
dimension of 2048), while the narrow network has three layers (two hidden, with dimension 200).
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B.5 GRAPH NEURAL NETWORK

We use a graph neural network derived from Pfaff et al. (2020) which we implement using PyTorch
Geometric (Fey & Lenssen, 2019). The graph network outputs accelerations for each particle which
are used to update estimates for the system’s velocity.

This network operates on graphs derived from meshes. We use different static mesh configurations
for each system: the single spring system is a mesh consisting of three particles, two of them fixed
and the third moving to compute the effects of the oscillation; the wave system is a cyclic graph
where each discretized spatial coordinate is connected to its neighbors; the spring mesh system uses
the graph defined by the masses and springs directly.

The network itself consists of a paired encoder/decoder pair which transforms the input states into
values on the graph, and converts them back for output. These networks are both small MLPs with
one hidden layer of dimension 128. On the graph structure another MLP is applied to the vertices
and edges; these are again MLPs with one hidden layer of size 128. These graph-acting networks are
applied fifteen times, recurrently, and this result is decoded by the decoder network.

C BENCHMARK SYSTEMS

We consider three physical systems: a single oscillating spring, a linear wave equation, and a mesh of
damped springs. The ground truth models for each of these systems with classical time integrators
are implemented using NumPy (Harris et al., 2020) and accelerated, where possible, with Numba
(Lam et al., 2015). When generating ground truth training and evaluation snapshots, we randomly
sample initial conditions. Representative initial condition states for each system are illustrated in
Figure 1. The ground truth data consist of the values of the state variables (q, p) for each discrete
time step, and the associated derivatives (q̇, ṗ).

C.1 SPRING

We simulate a single one-dimensional oscillating spring. In this system, the spring has zero rest
length, and both the oscillating mass and spring constant are set to 1. The spring then exerts a force
inversely proportional to the position of the mass q: ṗ(t) = −q and q̇(t) = p.

The energy of the system is proportional to q2 + p2 which is the radius of the cycle in phase space.
To sample initial conditions, we first sample a radius uniformly, then choose an angle theta uniformly.
This produces a uniform distribution over spring system energy levels and starts at an arbitrary point
in the cycle. Simulations of the spring system always run through one period. For “in-distribution”
training values, the radius is selected in the range (0.2, 1) and “out-of-distribution” radii are chosen
from (1, 1.2).

C.2 WAVE

This system closely follows the design in Peng & Mohseni (2016). Consider the wave equation with
speed c = 0.1

∂ttu = c2∂xxu , (3)

on a one-dimensional spatial domain [0, 1) with periodic boundary conditions. We represent this
second-order system as a first-order system with[

q̇(t)
ṗ(t)

]
=

[
0 I

c2Dxx 0

] [
q(t)
p(t)

]
, (4)

where Dxx ∈ Rn×n corresponds to the three-point central difference approximation of the spatial
derivative ∂xx and the matrices I and 0 are the identity and zero matrix, respectively, of appropriate
size. We discretize space into n = 125 evenly spaced grid points and evolve the system following the
dynamics described above.

Initial conditions are sampled with an initial pulse in the q component centered in at 0.5, in the middle
of the space. All initial conditions have zero momentum. The initial pulse is produced by a spline
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kernel as described in Peng & Mohseni (2016):

s(x) =
10

pw
· |x− 0.5| (5)

h(s) = ph ·


1− 3

2s
2 + 3

4s
3 if 0 ≤ s ≤ 1

1
4 (2− s)

3 if 1 < s ≤ 2

0 else
(6)

where the width and height of the pulse are scaled by parameters pw and ph, respectively. The spline
kernel pulse is then h(s(x)) for x ∈ [0, 1), evaluated at the discretized grid points.

For “in-distribution” samples parameters pw, ph are both chosen uniformly in the range (0.75, 1.25)
and “out-of-distribution” runs sample uniformly from (0.5, 0.75) ∪ (1.25, 1.5). All trajectories are
integrated until t = 5 when the wave has traveled through half a period.

C.3 SPRING MESH

This system manipulates a square grid of particles connected by springs, in a two dimensional
space. The particles all have mass 1, and are arranged into a unit grid. Springs are added along
the axis-aligned edges and diagonally across each grid square, with rest lengths selected so that the
regularly-spaced particles are in a rest position.

In this work we use a 5× 5 mesh where the top row of particles is fixed in place. Initial conditions
are sampled by choosing a perturbation for the position of each non-fixed spring. These perturbations
are chosen as uniform vectors inside a circle with radius 0.35. Out-of-distribution perturbations
are chosen uniformly in a ring with inner radius 0.35 and outer radius 0.45. The sampled initial
conditions all have zero momentum.

In this system, a spring between particles a and b exerts a force:

Fab = −k ·
(
‖qa − qb‖2 − `ab

) qa − qb
‖qa − qb‖2

− γ(q̇a − q̇b) (7)

where `ab is the rest length of the spring, γ = 0.1 is a parameter controlling the magnitude of an
underdamped velocity-based decay, and k = 1 is the spring constant.

D OUT OF DISTRIBUTION

We also give the results from Table 1 for out of distribution samples in Table 3.

Table 3: Relative slowdowns for equivalent error for learned method. This table follows the same
style as Table 1 but instead shows results for out of distribution samples.

Base Integrator mlp-w mlp-n nn-kernel gn knn

FE RK4 FE RK4 FE RK4 NUL FE RK4

Spring

FE 21.6 / 1 21.6 / 1 39.1 / 4 39.1 / 4 38.0 / 1 38.0 / 1 445.9 / 1 153.5 / 16 153.5 / 16
LF 28.9 / 32 28.9 / 32 74.0 / 4 74.0 / 4 52.1 / 16 52.1 / 16 595.4 / 32 153.5 / 16 116.0 / 1
RK4 28.9 / 32 28.9 / 32 74.0 / 4 74.0 / 4 52.1 / 16 52.1 / 16 595.4 / 32 153.5 / 16 116.0 / 1
BE 29.3 / 1 29.3 / 1 74.0 / 4 74.0 / 4 51.5 / 1 51.5 / 1 603.7 / 1 153.5 / 16 116.0 / 1

Wave

FE 97.9 / 8 97.9 / 8 108.1 / 8 108.1 / 8 168.5 / 4 168.5 / 4 1602.9 / 8 383.5 / 8 383.5 / 8
LF 118.4 / 128 118.4 / 128 130.6 / 128 130.6 / 128 385.4 / 128 385.4 / 128 1937.7 / 128 463.6 / 128 463.6 / 128
RK4 103.2 / 128 103.2 / 128 113.8 / 128 113.8 / 128 335.9 / 128 335.9 / 128 1688.5 / 128 404.0 / 128 404.0 / 128
BE 186.4 / 128 186.4 / 128 113.8 / 128 113.8 / 128 387.8 / 64 387.8 / 64 1688.5 / 128 404.0 / 128 404.0 / 128

Spring
Mesh

FE 1.6 / 8 1.6 / 8 3.4 / 16 3.4 / 16 2.5 / 16 2.5 / 16 58.8 / 8 107.6 / 16 107.6 / 16
LF 1.6 / 8 1.6 / 8 3.4 / 16 3.4 / 16 2.5 / 16 2.5 / 16 58.8 / 8 107.6 / 16 107.6 / 16
RK4 1.6 / 8 1.6 / 8 3.4 / 16 3.4 / 16 2.5 / 16 2.5 / 16 58.8 / 8 107.6 / 16 107.6 / 16
BE 1.6 / 8 1.6 / 8 3.4 / 16 3.4 / 16 2.5 / 16 2.5 / 16 58.8 / 8 107.6 / 16 107.6 / 16
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